Forest tree breeding using genomic Markov causal models: a new approach to genomic tree breeding improvement.

IF 3.1 2区 生物学 Q2 ECOLOGY Heredity Pub Date : 2025-03-17 DOI:10.1038/s41437-025-00755-z
Esteban J Jurcic, Joaquín Dutour, Pamela V Villalba, Carmelo Centurión, Rodolfo J C Cantet, Sebastián Munilla, Eduardo P Cappa
{"title":"Forest tree breeding using genomic Markov causal models: a new approach to genomic tree breeding improvement.","authors":"Esteban J Jurcic, Joaquín Dutour, Pamela V Villalba, Carmelo Centurión, Rodolfo J C Cantet, Sebastián Munilla, Eduardo P Cappa","doi":"10.1038/s41437-025-00755-z","DOIUrl":null,"url":null,"abstract":"<p><p>Traditionally, a pedigree-based individual-tree mixed model (ABLUP) has been used in forest genetic evaluations to identify individuals with the highest breeding values (BVs). ABLUP is a Markovian causal model, as any individual BV can be expressed as a linear regression on its parental BVs. The regression coefficients are based on the genealogical parent-offspring relationship and are equal to one-half. This study aimed to develop and apply two new causal models that replace these fixed coefficients with ones calculated using genomic information, specifically derived from the genomic-based relationship matrix. We compared the performance of these genomic-based causal models with ABLUP and non-causal GBLUP models. To do so, we evaluated a four-generation population of Eucalyptus grandis, consisting of 3082 genotyped trees with 14,033 single nucleotide polymorphism markers. Six traits were assessed in 1219 trees across the first three breeding cycles. The heritability and genetic means estimates were higher in the causal pedigree- and genomic-based models compared to GBLUP. Realized genetic gains were similar across all models, but the causal models more closely matched the predicted gains than GBLUP. In turn, GBLUP demonstrated better predictive performance, albeit with lower precision. The causal models developed in this study enable discerning intra-familial variations in the predictions of BVs at a lower computational burden and offer a potential alternative to the GBLUP model.</p>","PeriodicalId":12991,"journal":{"name":"Heredity","volume":" ","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Heredity","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41437-025-00755-z","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Traditionally, a pedigree-based individual-tree mixed model (ABLUP) has been used in forest genetic evaluations to identify individuals with the highest breeding values (BVs). ABLUP is a Markovian causal model, as any individual BV can be expressed as a linear regression on its parental BVs. The regression coefficients are based on the genealogical parent-offspring relationship and are equal to one-half. This study aimed to develop and apply two new causal models that replace these fixed coefficients with ones calculated using genomic information, specifically derived from the genomic-based relationship matrix. We compared the performance of these genomic-based causal models with ABLUP and non-causal GBLUP models. To do so, we evaluated a four-generation population of Eucalyptus grandis, consisting of 3082 genotyped trees with 14,033 single nucleotide polymorphism markers. Six traits were assessed in 1219 trees across the first three breeding cycles. The heritability and genetic means estimates were higher in the causal pedigree- and genomic-based models compared to GBLUP. Realized genetic gains were similar across all models, but the causal models more closely matched the predicted gains than GBLUP. In turn, GBLUP demonstrated better predictive performance, albeit with lower precision. The causal models developed in this study enable discerning intra-familial variations in the predictions of BVs at a lower computational burden and offer a potential alternative to the GBLUP model.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Heredity
Heredity 生物-进化生物学
CiteScore
7.50
自引率
2.60%
发文量
84
审稿时长
4-8 weeks
期刊介绍: Heredity is the official journal of the Genetics Society. It covers a broad range of topics within the field of genetics and therefore papers must address conceptual or applied issues of interest to the journal''s wide readership
期刊最新文献
Sperm DNA methylation landscape and its links to male fertility in a non-model teleost using EM-seq. Forest tree breeding using genomic Markov causal models: a new approach to genomic tree breeding improvement. Detection of positive selection on depression-associated genes. Quantifying the effects of computational filter criteria on the accurate identification of de novo mutations at varying levels of sequencing coverage. FISH mapping in Xenopus pygmaeus refines understanding of genomic rearrangements and reveals jumping NORs in African clawed frogs.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1