{"title":"Identification of QTL for branch traits in soybean (<i>Glycine max</i> L.) and its application in genomic selection.","authors":"Qichao Yang, Jing Wang, Yajun Xiong, Alu Mao, Zhiqing Zhang, Yijie Chen, Shirui Teng, Zhiyu Liu, Jun Wang, Jian Song, Lijuan Qiu","doi":"10.3389/fgene.2025.1484146","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Branches are important for soybean yield, and previous studies examining branch traits have primarily focused on branch number (BN), while research assessing branch internode number (BIN), branch length (BL), and branch internode length (BIL) remains insufficient.</p><p><strong>Methods: </strong>A recombinant inbred line (RIL) population consisting of 364 lines was constructed by crossing ZD41 and ZYD02878. Based on the RIL population, we genetically analyzed four branch traits using four different GWAS methods including efficient mixed-model association expedited, restricted two-stage multi-locus genome-wide association analysis, trait analysis by association, evolution and linkage, and three-variance-component multi-locus random-SNP-effect mixed linear model analyses. Additionally, we screened candidate genes for the major QTL and constructed a genomic selection (GS) model to assess the prediction accuracy of the four branch traits.</p><p><strong>Results and discussion: </strong>In this study, four branch traits (BN, BIN, BL, and BIL) were phenotypically analyzed using the F<sub>6</sub>-F<sub>9</sub> generations of a RIL population consisting of 364 lines. Among these four traits, BL exhibited the strongest correlation with BIN (0.92), and BIN exhibited the strongest broad-sense heritability (0.89). Furthermore, 99, 43, 50, and 59 QTL were associated with BN, BIN, BL, and BIL, respectively, based on four different methods, and a major QTL region (Chr10:45,050,047..46,781,943) was strongly and simultaneously associated with all four branch traits. For the 207 genes within this region, nine genes were retained as candidates after SNP variation analysis, fixation index (<i>F</i> <sub><i>ST</i></sub> ), spatial and temporal expression analyses and functionality assessment that involved the regulation of phytohormones, transcription factors, cell wall and cell wall cellulose synthesis. Genomic selection (GS) prediction accuracies for BN, BIN, BL, and BIL in the different environments were 0.59, 0.49, 0.48, and 0.56, respectively, according to GBLUP. This study lays the genetic foundation for BN, BIN, BL, and BIL and provides a reference for functional validation of regulatory genes in the future.</p>","PeriodicalId":12750,"journal":{"name":"Frontiers in Genetics","volume":"16 ","pages":"1484146"},"PeriodicalIF":2.8000,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11911462/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3389/fgene.2025.1484146","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0
Abstract
Introduction: Branches are important for soybean yield, and previous studies examining branch traits have primarily focused on branch number (BN), while research assessing branch internode number (BIN), branch length (BL), and branch internode length (BIL) remains insufficient.
Methods: A recombinant inbred line (RIL) population consisting of 364 lines was constructed by crossing ZD41 and ZYD02878. Based on the RIL population, we genetically analyzed four branch traits using four different GWAS methods including efficient mixed-model association expedited, restricted two-stage multi-locus genome-wide association analysis, trait analysis by association, evolution and linkage, and three-variance-component multi-locus random-SNP-effect mixed linear model analyses. Additionally, we screened candidate genes for the major QTL and constructed a genomic selection (GS) model to assess the prediction accuracy of the four branch traits.
Results and discussion: In this study, four branch traits (BN, BIN, BL, and BIL) were phenotypically analyzed using the F6-F9 generations of a RIL population consisting of 364 lines. Among these four traits, BL exhibited the strongest correlation with BIN (0.92), and BIN exhibited the strongest broad-sense heritability (0.89). Furthermore, 99, 43, 50, and 59 QTL were associated with BN, BIN, BL, and BIL, respectively, based on four different methods, and a major QTL region (Chr10:45,050,047..46,781,943) was strongly and simultaneously associated with all four branch traits. For the 207 genes within this region, nine genes were retained as candidates after SNP variation analysis, fixation index (FST ), spatial and temporal expression analyses and functionality assessment that involved the regulation of phytohormones, transcription factors, cell wall and cell wall cellulose synthesis. Genomic selection (GS) prediction accuracies for BN, BIN, BL, and BIL in the different environments were 0.59, 0.49, 0.48, and 0.56, respectively, according to GBLUP. This study lays the genetic foundation for BN, BIN, BL, and BIL and provides a reference for functional validation of regulatory genes in the future.
Frontiers in GeneticsBiochemistry, Genetics and Molecular Biology-Molecular Medicine
CiteScore
5.50
自引率
8.10%
发文量
3491
审稿时长
14 weeks
期刊介绍:
Frontiers in Genetics publishes rigorously peer-reviewed research on genes and genomes relating to all the domains of life, from humans to plants to livestock and other model organisms. Led by an outstanding Editorial Board of the world’s leading experts, this multidisciplinary, open-access journal is at the forefront of communicating cutting-edge research to researchers, academics, clinicians, policy makers and the public.
The study of inheritance and the impact of the genome on various biological processes is well documented. However, the majority of discoveries are still to come. A new era is seeing major developments in the function and variability of the genome, the use of genetic and genomic tools and the analysis of the genetic basis of various biological phenomena.