{"title":"The Structural Basis of Substrate Selectivity of the Acinetobactin Biosynthetic Adenylation Domain, BasE.","authors":"Syed Fardin Ahmed, Andrew M Gulick","doi":"10.1016/j.jbc.2025.108413","DOIUrl":null,"url":null,"abstract":"<p><p>Siderophores are small molecule natural products that are often produced by enzymes called non-ribosomal peptide synthetases (NRPSs) that many pathogenic bacteria produce to adapt to low iron conditions. NRPS bioengineering could lead to the production of siderophore analogs with the potential to interrupt this unique bacterial iron uptake system, endowing the molecules with antimicrobial properties. Acinetobacter baumannii produces the catecholate siderophore acinetobactin to scavenge iron, a nutrient essential for several metabolic processes. Previous studies have reported synthetic analogs of acinetobactin that disrupt iron acquisition by A. baumannii, resulting in inhibition of bacterial growth. To foster a long-term goal of using a chemoenzymatic approach to produce additional analogs, we have targeted the adenylation domain BasE for the incorporation of alternate substrates. Here we report a structure-guided approach to investigate the substrate selectivity of BasE for non-native aryl substrates. Using targeted mutagenesis in the active site of BasE, we generated mutants that catalyze the activation of alternate substrates with catalytic efficiencies comparable to the wildtype enzyme with its natural substrate 2,3-dihydroxybenzoic acid (DHB). We further solved structures of these mutants bound to the non-native substrates that illustrate an expanded binding pocket that support the improved promiscuity of BasE. Motivated to develop an approach to produce analogs of acinetobactin, including molecules that could block iron uptake or be readily conjugated to antibiotic cargo, our work aims to develop a structure-guided approach for using catecholate siderophore pathways to incorporate alternate substrates.</p>","PeriodicalId":15140,"journal":{"name":"Journal of Biological Chemistry","volume":" ","pages":"108413"},"PeriodicalIF":4.0000,"publicationDate":"2025-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biological Chemistry","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.jbc.2025.108413","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Siderophores are small molecule natural products that are often produced by enzymes called non-ribosomal peptide synthetases (NRPSs) that many pathogenic bacteria produce to adapt to low iron conditions. NRPS bioengineering could lead to the production of siderophore analogs with the potential to interrupt this unique bacterial iron uptake system, endowing the molecules with antimicrobial properties. Acinetobacter baumannii produces the catecholate siderophore acinetobactin to scavenge iron, a nutrient essential for several metabolic processes. Previous studies have reported synthetic analogs of acinetobactin that disrupt iron acquisition by A. baumannii, resulting in inhibition of bacterial growth. To foster a long-term goal of using a chemoenzymatic approach to produce additional analogs, we have targeted the adenylation domain BasE for the incorporation of alternate substrates. Here we report a structure-guided approach to investigate the substrate selectivity of BasE for non-native aryl substrates. Using targeted mutagenesis in the active site of BasE, we generated mutants that catalyze the activation of alternate substrates with catalytic efficiencies comparable to the wildtype enzyme with its natural substrate 2,3-dihydroxybenzoic acid (DHB). We further solved structures of these mutants bound to the non-native substrates that illustrate an expanded binding pocket that support the improved promiscuity of BasE. Motivated to develop an approach to produce analogs of acinetobactin, including molecules that could block iron uptake or be readily conjugated to antibiotic cargo, our work aims to develop a structure-guided approach for using catecholate siderophore pathways to incorporate alternate substrates.
期刊介绍:
The Journal of Biological Chemistry welcomes high-quality science that seeks to elucidate the molecular and cellular basis of biological processes. Papers published in JBC can therefore fall under the umbrellas of not only biological chemistry, chemical biology, or biochemistry, but also allied disciplines such as biophysics, systems biology, RNA biology, immunology, microbiology, neurobiology, epigenetics, computational biology, ’omics, and many more. The outcome of our focus on papers that contribute novel and important mechanistic insights, rather than on a particular topic area, is that JBC is truly a melting pot for scientists across disciplines. In addition, JBC welcomes papers that describe methods that will help scientists push their biochemical inquiries forward and resources that will be of use to the research community.