Correlation of periodontitis with hepatic and intestinal inflammation and glycemic control, and effects of bioconverted Artemisia herba-alba by Lactiplantibacillus plantarum SMFM2016-RK.
{"title":"Correlation of periodontitis with hepatic and intestinal inflammation and glycemic control, and effects of bioconverted <i>Artemisia herba-alba</i> by <i>Lactiplantibacillus plantarum</i> SMFM2016-RK.","authors":"Yewon Lee, Yohan Yoon, Kyoung-Hee Choi","doi":"10.1080/20002297.2025.2473246","DOIUrl":null,"url":null,"abstract":"<p><p>Periodontitis has been linked to systemic inflammation, however research on its role in causing systemic diseases remains limited. Recent studies explore probiotics for microbiome modulation and enhancing natural compound bioavailability. This study investigated periodontitis-related systemic disease mechanisms, and evaluated the mitigation effects of bioconversion product using <i>Lactiplantibacillus plantarum</i> SMFM2016-RK and <i>Artemisia herba-alba</i> extracts. Four types of bioconverted milk [BM1 (<i>L. plantarum</i> SMFM2016-RK), BM2 (BM1 + <i>A. herba-alba</i> ethanol extract), BM3 (BM1 + <i>A. herba-alba</i> hot-water extract), and BM4 (BM1+ both <i>A. herba-alba</i> extracts)] were studied in a periodontitis-induced rat model. Rats were divided into six groups: normal control, skim milk with ligature, and four BM groups with ligature. Periodontitis induction elevated trabecular resorption (0.325 ± 0.057 mm³) and histopathological symptoms. Serum ALT (55.6 ± 6.6 U/L), glucose (261.7 ± 64.3 mg/dL), insulin (1.90 ± 0.87 ng/mL), inflammation in the liver and colon, and gluconeogenesis-related enzyme expression increased. Periodontitis-induced rats showed gut dysbiosis, with decreased <i>Lactobacillaceae</i> level and increased <i>Oscillospiraceae</i> level. BM3 administration significantly reduced the serum glucose (190.9 ± 27.8 mg/dL), ALT (40.5 ± 5.0 U/L), inflammation, and gluconeogenesis-related enzymes, while increasing tight junction proteins expression and phylum Actinobacteria levels in the gut microbiome. The findings highlight the systemic impact of periodontitis on inflammation, glycemic control, and gut microbiome balance. BM3 effectively alleviated these effects suggesting therapeutic potential.</p>","PeriodicalId":16598,"journal":{"name":"Journal of Oral Microbiology","volume":"17 1","pages":"2473246"},"PeriodicalIF":3.7000,"publicationDate":"2025-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11912291/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Oral Microbiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/20002297.2025.2473246","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Periodontitis has been linked to systemic inflammation, however research on its role in causing systemic diseases remains limited. Recent studies explore probiotics for microbiome modulation and enhancing natural compound bioavailability. This study investigated periodontitis-related systemic disease mechanisms, and evaluated the mitigation effects of bioconversion product using Lactiplantibacillus plantarum SMFM2016-RK and Artemisia herba-alba extracts. Four types of bioconverted milk [BM1 (L. plantarum SMFM2016-RK), BM2 (BM1 + A. herba-alba ethanol extract), BM3 (BM1 + A. herba-alba hot-water extract), and BM4 (BM1+ both A. herba-alba extracts)] were studied in a periodontitis-induced rat model. Rats were divided into six groups: normal control, skim milk with ligature, and four BM groups with ligature. Periodontitis induction elevated trabecular resorption (0.325 ± 0.057 mm³) and histopathological symptoms. Serum ALT (55.6 ± 6.6 U/L), glucose (261.7 ± 64.3 mg/dL), insulin (1.90 ± 0.87 ng/mL), inflammation in the liver and colon, and gluconeogenesis-related enzyme expression increased. Periodontitis-induced rats showed gut dysbiosis, with decreased Lactobacillaceae level and increased Oscillospiraceae level. BM3 administration significantly reduced the serum glucose (190.9 ± 27.8 mg/dL), ALT (40.5 ± 5.0 U/L), inflammation, and gluconeogenesis-related enzymes, while increasing tight junction proteins expression and phylum Actinobacteria levels in the gut microbiome. The findings highlight the systemic impact of periodontitis on inflammation, glycemic control, and gut microbiome balance. BM3 effectively alleviated these effects suggesting therapeutic potential.
期刊介绍:
As the first Open Access journal in its field, the Journal of Oral Microbiology aims to be an influential source of knowledge on the aetiological agents behind oral infectious diseases. The journal is an international forum for original research on all aspects of ''oral health''. Articles which seek to understand ''oral health'' through exploration of the pathogenesis, virulence, host-parasite interactions, and immunology of oral infections are of particular interest. However, the journal also welcomes work that addresses the global agenda of oral infectious diseases and articles that present new strategies for treatment and prevention or improvements to existing strategies.
Topics: ''oral health'', microbiome, genomics, host-pathogen interactions, oral infections, aetiologic agents, pathogenesis, molecular microbiology systemic diseases, ecology/environmental microbiology, treatment, diagnostics, epidemiology, basic oral microbiology, and taxonomy/systematics.
Article types: original articles, notes, review articles, mini-reviews and commentaries