Novel biallelic TK2 mutations cause mitochondrial DNA depletion syndrome with infantile early-onset lipid storage myopathy.

IF 3.4 2区 医学 Q2 GENETICS & HEREDITY Orphanet Journal of Rare Diseases Pub Date : 2025-03-17 DOI:10.1186/s13023-025-03639-x
Duoling Li, Yixin Shi, Hanhan Sun, Chuanzhu Yan, Yan Lin
{"title":"Novel biallelic TK2 mutations cause mitochondrial DNA depletion syndrome with infantile early-onset lipid storage myopathy.","authors":"Duoling Li, Yixin Shi, Hanhan Sun, Chuanzhu Yan, Yan Lin","doi":"10.1186/s13023-025-03639-x","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Mutations in the TK2 gene are strongly associated with mitochondrial DNA depletion syndrome (MDS), a severe condition with high mortality and poor outcomes. Although many MDS cases are reported, those linked to TK2 mutations with lipid deposition are rare. Large deletions in the TK2 gene are even rarer.</p><p><strong>Methods: </strong>We conducted whole-exome sequencing to find the gene linked to MDS, followed by genomic and structural analyses, histopathological, and functional analyses to assess the mutations' pathogenicity. Additionally, a HEK293T cell model with TK2 mutations was created to investigate the impact of large deletions on mitochondrial function.</p><p><strong>Results: </strong>The patient was found to have a novel compound heterozygous mutation in the TK2 gene, consisting of a large deletion spanning exons 5-10 (E5-E10 del) and a previously reported missense mutation (c.311C > A, p.Arg104His). Analysis of the patient's muscle tissue demonstrated a marked reduction in mtDNA content and a significant impairment in overall mitochondrial function. In the HEK293T cell model, the group with the deletion mutation exhibited a notable reduction in TK2 protein expression and levels of mitochondrial complex subunits when compared to the control group. Furthermore, there was an observed increase in ROS levels, a decrease in ATP production, and compromised mitochondrial respiratory chain function. Moreover, we conducted a comprehensive review of the previously reported genotypic and phenotypic spectrum of TK2 mutations in the literature.</p><p><strong>Conclusions: </strong>This case report underscores the detrimental impact of large fragment deletion mutations in the TK2 gene and elucidates their role in the pathogenesis of MDS. It broadens the spectrum of known TK2 mutations and enhances our understanding of the structural and functional consequences of these mutations.</p>","PeriodicalId":19651,"journal":{"name":"Orphanet Journal of Rare Diseases","volume":"20 1","pages":"130"},"PeriodicalIF":3.4000,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11912596/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Orphanet Journal of Rare Diseases","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s13023-025-03639-x","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Mutations in the TK2 gene are strongly associated with mitochondrial DNA depletion syndrome (MDS), a severe condition with high mortality and poor outcomes. Although many MDS cases are reported, those linked to TK2 mutations with lipid deposition are rare. Large deletions in the TK2 gene are even rarer.

Methods: We conducted whole-exome sequencing to find the gene linked to MDS, followed by genomic and structural analyses, histopathological, and functional analyses to assess the mutations' pathogenicity. Additionally, a HEK293T cell model with TK2 mutations was created to investigate the impact of large deletions on mitochondrial function.

Results: The patient was found to have a novel compound heterozygous mutation in the TK2 gene, consisting of a large deletion spanning exons 5-10 (E5-E10 del) and a previously reported missense mutation (c.311C > A, p.Arg104His). Analysis of the patient's muscle tissue demonstrated a marked reduction in mtDNA content and a significant impairment in overall mitochondrial function. In the HEK293T cell model, the group with the deletion mutation exhibited a notable reduction in TK2 protein expression and levels of mitochondrial complex subunits when compared to the control group. Furthermore, there was an observed increase in ROS levels, a decrease in ATP production, and compromised mitochondrial respiratory chain function. Moreover, we conducted a comprehensive review of the previously reported genotypic and phenotypic spectrum of TK2 mutations in the literature.

Conclusions: This case report underscores the detrimental impact of large fragment deletion mutations in the TK2 gene and elucidates their role in the pathogenesis of MDS. It broadens the spectrum of known TK2 mutations and enhances our understanding of the structural and functional consequences of these mutations.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Orphanet Journal of Rare Diseases
Orphanet Journal of Rare Diseases 医学-医学:研究与实验
CiteScore
6.30
自引率
8.10%
发文量
418
审稿时长
4-8 weeks
期刊介绍: Orphanet Journal of Rare Diseases is an open access, peer-reviewed journal that encompasses all aspects of rare diseases and orphan drugs. The journal publishes high-quality reviews on specific rare diseases. In addition, the journal may consider articles on clinical trial outcome reports, either positive or negative, and articles on public health issues in the field of rare diseases and orphan drugs. The journal does not accept case reports.
期刊最新文献
Clinical features and current management experience in Gorham-Stout disease: a systematic review. Perspectives on long-term medical management of urea cycle disorders: insights from a survey of UK healthcare professionals. Genotype and cardiac outcome in patients with cardiocutaneous syndrome (Naxos disease variant: Carvajal syndrome). Texture analysis of cardiovascular MRI native T1 mapping in patients with Duchenne muscular dystrophy. Clinical and biochemical characteristics of patients with ornithine transcarbamylase deficiency and in silico analysis of OTC gene.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1