Anping Feng, Heping Zhao, Chunting Qiu, Dan Luo, Hao Wu, Xiaojun Meng, Linghua Li, Huachun Zou
{"title":"Gut microbiota metabolites impact immunologic responses to antiretroviral therapy in HIV-infected men who have sex with men.","authors":"Anping Feng, Heping Zhao, Chunting Qiu, Dan Luo, Hao Wu, Xiaojun Meng, Linghua Li, Huachun Zou","doi":"10.1186/s40249-025-01291-y","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The association between gut microbial metabolites and immunologic non-response among people living with HIV (PLHIV) receiving antiretroviral therapy (ART) has not been well established. We aimed to characterize gut microbial metabolites among HIV-infected men who have sex with men (MSM) with different immunologic responses.</p><p><strong>Methods: </strong>We recruited HIV-infected MSM from Guangzhou Eighth People's Hospital and HIV-uninfected MSM (healthy controls, HC) from a local MSM community-based organization in Guangzhou between June and October 2021. HIV-infected MSM were grouped into good immunological responders (GIR) (CD4 + T cell count ≥ 350 cells/μl) and poor immunological responders (PIR) (CD4 + T cell count < 350 cells/μl) after 24 months of ART treatment. Online questionnaires and stool samples were collected. Microbial metabolites in stool were obtained through ultra-performance liquid chromatography coupled to a tandem mass spectrometry (UPLC-MS/MS) system. Differential metabolites were identified and analyzed using the Kruskal-Wallis test, followed by pairwise comparisons with the Wilcoxon rank-sum test. The least absolute selection and shrinkage operator was used to select potential metabolites biomarkers.</p><p><strong>Results: </strong>A total of 51 HC, 56 GIR, and 42 PIR were included. No statistically significant differences were observed in the median time since HIV diagnosis and ART duration between GIR and PIR. Among the 174 quantified metabolites, 81 significantly differed among HC, GIR, and PIR (P < 0.05). Among differential metabolites, indole-3-propionic acid significantly decreased from HC (11.39 nmol/g) and GIR (8.16 nmol/g) to PIR (6.50 nmol/g). The pathway analysis showed that tryptophan metabolism differed significantly between GIR and PIR (P < 0.05). Four potential metabolites biomarkers (dimethylglycine, cinnamic acid, 3-hydroxyisovaleric acid, and propionic acid) that distinguish GIR and PIR were identified, and the corresponding area under the curve based on potential biomarkers was 0.773 (95% CI: 0.675-0.871).</p><p><strong>Conclusions: </strong>This study identified significant differences in gut microbial metabolites among HIV-infected MSM with different immunologic responses. These results indicate the potential of gut microbial metabolites as novel disease progression markers and therapeutic targets.</p>","PeriodicalId":48820,"journal":{"name":"Infectious Diseases of Poverty","volume":"14 1","pages":"21"},"PeriodicalIF":8.1000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11917012/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Infectious Diseases of Poverty","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s40249-025-01291-y","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Background: The association between gut microbial metabolites and immunologic non-response among people living with HIV (PLHIV) receiving antiretroviral therapy (ART) has not been well established. We aimed to characterize gut microbial metabolites among HIV-infected men who have sex with men (MSM) with different immunologic responses.
Methods: We recruited HIV-infected MSM from Guangzhou Eighth People's Hospital and HIV-uninfected MSM (healthy controls, HC) from a local MSM community-based organization in Guangzhou between June and October 2021. HIV-infected MSM were grouped into good immunological responders (GIR) (CD4 + T cell count ≥ 350 cells/μl) and poor immunological responders (PIR) (CD4 + T cell count < 350 cells/μl) after 24 months of ART treatment. Online questionnaires and stool samples were collected. Microbial metabolites in stool were obtained through ultra-performance liquid chromatography coupled to a tandem mass spectrometry (UPLC-MS/MS) system. Differential metabolites were identified and analyzed using the Kruskal-Wallis test, followed by pairwise comparisons with the Wilcoxon rank-sum test. The least absolute selection and shrinkage operator was used to select potential metabolites biomarkers.
Results: A total of 51 HC, 56 GIR, and 42 PIR were included. No statistically significant differences were observed in the median time since HIV diagnosis and ART duration between GIR and PIR. Among the 174 quantified metabolites, 81 significantly differed among HC, GIR, and PIR (P < 0.05). Among differential metabolites, indole-3-propionic acid significantly decreased from HC (11.39 nmol/g) and GIR (8.16 nmol/g) to PIR (6.50 nmol/g). The pathway analysis showed that tryptophan metabolism differed significantly between GIR and PIR (P < 0.05). Four potential metabolites biomarkers (dimethylglycine, cinnamic acid, 3-hydroxyisovaleric acid, and propionic acid) that distinguish GIR and PIR were identified, and the corresponding area under the curve based on potential biomarkers was 0.773 (95% CI: 0.675-0.871).
Conclusions: This study identified significant differences in gut microbial metabolites among HIV-infected MSM with different immunologic responses. These results indicate the potential of gut microbial metabolites as novel disease progression markers and therapeutic targets.
期刊介绍:
Infectious Diseases of Poverty is an open access, peer-reviewed journal that focuses on addressing essential public health questions related to infectious diseases of poverty. The journal covers a wide range of topics including the biology of pathogens and vectors, diagnosis and detection, treatment and case management, epidemiology and modeling, zoonotic hosts and animal reservoirs, control strategies and implementation, new technologies and application. It also considers the transdisciplinary or multisectoral effects on health systems, ecohealth, environmental management, and innovative technology. The journal aims to identify and assess research and information gaps that hinder progress towards new interventions for public health problems in the developing world. Additionally, it provides a platform for discussing these issues to advance research and evidence building for improved public health interventions in poor settings.