In vivo and In vitro Infection of Potato Roots with Plant Parasitic Nematodes for the Assessment of Induced Structural Changes.

IF 1.2 4区 综合性期刊 Q3 MULTIDISCIPLINARY SCIENCES Jove-Journal of Visualized Experiments Pub Date : 2025-02-28 DOI:10.3791/67756
Jorge M S Faria, Pedro Barbosa, A Cristina Figueiredo, Manuel Mota, Cláudia S L Vicente
{"title":"In vivo and In vitro Infection of Potato Roots with Plant Parasitic Nematodes for the Assessment of Induced Structural Changes.","authors":"Jorge M S Faria, Pedro Barbosa, A Cristina Figueiredo, Manuel Mota, Cláudia S L Vicente","doi":"10.3791/67756","DOIUrl":null,"url":null,"abstract":"<p><p>Soil-dwelling plant parasitic nematodes (PPNs) are important potato pests that cause lesions and/or change plant roots structure, leading to reduced crop fitness and productivity. Research on the cellular and subcellular mechanisms of PPNs infection and development can resort to field plants or seedlings under greenhouse conditions. Field studies are more representative of natural environments but are subjected to the unpredictability of environmental conditions that can heavily influence research outcomes. Greenhouse studies allow higher control over environmental variables and higher safety against contaminants or pathogens. However, in some hosts, genetic diversity becomes an important factor of variability and influences the host-parasite complex response. We have developed in vitro co-cultures of transgenic roots with PPNs as a reliable alternative that occupies less space, requires less time to obtain, and is free from contamination or from host genetic variability. Co-cultures are obtained by introducing aseptic PPNs to host in vitro transgenic roots. They can be maintained indefinitely, which makes them excellent support for keeping collections of reference PPNs. In the present work, a protocol is detailed for the controlled infection of in vivo potato roots with the root lesion nematode and for establishing in vitro co-cultures of potato transgenic roots with the root-knot nematode. The in vitro co-cultures provided a laboratory proxy for the natural potato infection condition and produced nematode life stages irrespective of season or climate conditions. Additionally, the methodology used for structural analysis is detailed using histochemistry and optical microscopy. The acid fuchsin dye is used to follow nematode attack sites on roots, while differential staining with Periodic acid-Schiff (PAS) and toluidine blue O highlights nematode structures in potato internal root tissue.</p>","PeriodicalId":48787,"journal":{"name":"Jove-Journal of Visualized Experiments","volume":" 216","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jove-Journal of Visualized Experiments","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.3791/67756","RegionNum":4,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Soil-dwelling plant parasitic nematodes (PPNs) are important potato pests that cause lesions and/or change plant roots structure, leading to reduced crop fitness and productivity. Research on the cellular and subcellular mechanisms of PPNs infection and development can resort to field plants or seedlings under greenhouse conditions. Field studies are more representative of natural environments but are subjected to the unpredictability of environmental conditions that can heavily influence research outcomes. Greenhouse studies allow higher control over environmental variables and higher safety against contaminants or pathogens. However, in some hosts, genetic diversity becomes an important factor of variability and influences the host-parasite complex response. We have developed in vitro co-cultures of transgenic roots with PPNs as a reliable alternative that occupies less space, requires less time to obtain, and is free from contamination or from host genetic variability. Co-cultures are obtained by introducing aseptic PPNs to host in vitro transgenic roots. They can be maintained indefinitely, which makes them excellent support for keeping collections of reference PPNs. In the present work, a protocol is detailed for the controlled infection of in vivo potato roots with the root lesion nematode and for establishing in vitro co-cultures of potato transgenic roots with the root-knot nematode. The in vitro co-cultures provided a laboratory proxy for the natural potato infection condition and produced nematode life stages irrespective of season or climate conditions. Additionally, the methodology used for structural analysis is detailed using histochemistry and optical microscopy. The acid fuchsin dye is used to follow nematode attack sites on roots, while differential staining with Periodic acid-Schiff (PAS) and toluidine blue O highlights nematode structures in potato internal root tissue.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Jove-Journal of Visualized Experiments
Jove-Journal of Visualized Experiments MULTIDISCIPLINARY SCIENCES-
CiteScore
2.10
自引率
0.00%
发文量
992
期刊介绍: JoVE, the Journal of Visualized Experiments, is the world''s first peer reviewed scientific video journal. Established in 2006, JoVE is devoted to publishing scientific research in a visual format to help researchers overcome two of the biggest challenges facing the scientific research community today; poor reproducibility and the time and labor intensive nature of learning new experimental techniques.
期刊最新文献
Erratum: Bulk Electroacupuncture Operation for Mice or Young Rats. Erratum: Periorbital Placement of a Laser Doppler Probe for Cerebral Blood Flow Monitoring Prior to Middle Cerebral Artery Occlusion in Rodent Models. 2.5D Model for Ex Vivo Mechanical Characterization of Sprouting Angiogenesis in Living Tissue. Characterizing Extracellular Vesicles from Biological Fluids. Fluorescence Assays for the Study of Mycobacterium tuberculosis Interaction with the Immune Receptor SLAMF1.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1