Inhomogeneous birefringence analysis using a tensor-valued backprojection

IF 1.1 4区 物理与天体物理 Q4 OPTICS Optical Review Pub Date : 2025-03-19 DOI:10.1007/s10043-025-00954-3
Masafumi Seigo, Hidetoshi Fukui, Shogo Kawano, Meredith Kupinski
{"title":"Inhomogeneous birefringence analysis using a tensor-valued backprojection","authors":"Masafumi Seigo, Hidetoshi Fukui, Shogo Kawano, Meredith Kupinski","doi":"10.1007/s10043-025-00954-3","DOIUrl":null,"url":null,"abstract":"<p>Injection-molded lenses have an inhomogeneous stress-induced birefringence that can degrade optical performance. This paper presents a new approach for measuring and analyzing inhomogeneous anisotropic samples. The birefringence distribution is characterized by 3D index ellipsoids, and a tomographic reconstruction of this 3D distribution is developed from a linear line projection relationship between the spatially varying index ellipsoids and tomographic polarimetry. This forward representation enables a tensor-valued backprojection for reconstructing the birefringence distribution of an inhomogeneous anisotropic sample. In this approach, each index ellipsoid is represented by a Hermitian matrix, and the 3D birefringence distribution is defined as the distribution of these matrices. This paper is centered on the introduction of the fundamental algorithm and the presentation of a general solution by applying the Radon transform and the backprojection to a tensor field, without requiring specific parameters such as stress fields. Consequently, the computational approach presented in this paper demonstrates that, using 60 tomographic views, reconstruction errors for parameters that characterize spatially varying index ellipsoids remain less than 5%. Here, the error is defined as the ratio of reconstruction variation to the respective maximum values of the original distributions.</p>","PeriodicalId":722,"journal":{"name":"Optical Review","volume":"56 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optical Review","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1007/s10043-025-00954-3","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

Abstract

Injection-molded lenses have an inhomogeneous stress-induced birefringence that can degrade optical performance. This paper presents a new approach for measuring and analyzing inhomogeneous anisotropic samples. The birefringence distribution is characterized by 3D index ellipsoids, and a tomographic reconstruction of this 3D distribution is developed from a linear line projection relationship between the spatially varying index ellipsoids and tomographic polarimetry. This forward representation enables a tensor-valued backprojection for reconstructing the birefringence distribution of an inhomogeneous anisotropic sample. In this approach, each index ellipsoid is represented by a Hermitian matrix, and the 3D birefringence distribution is defined as the distribution of these matrices. This paper is centered on the introduction of the fundamental algorithm and the presentation of a general solution by applying the Radon transform and the backprojection to a tensor field, without requiring specific parameters such as stress fields. Consequently, the computational approach presented in this paper demonstrates that, using 60 tomographic views, reconstruction errors for parameters that characterize spatially varying index ellipsoids remain less than 5%. Here, the error is defined as the ratio of reconstruction variation to the respective maximum values of the original distributions.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Optical Review
Optical Review 物理-光学
CiteScore
2.30
自引率
0.00%
发文量
62
审稿时长
2 months
期刊介绍: Optical Review is an international journal published by the Optical Society of Japan. The scope of the journal is: General and physical optics; Quantum optics and spectroscopy; Information optics; Photonics and optoelectronics; Biomedical photonics and biological optics; Lasers; Nonlinear optics; Optical systems and technologies; Optical materials and manufacturing technologies; Vision; Infrared and short wavelength optics; Cross-disciplinary areas such as environmental, energy, food, agriculture and space technologies; Other optical methods and applications.
期刊最新文献
Inhomogeneous birefringence analysis using a tensor-valued backprojection Through-focus scanning re-radiance simulation for semiconductor inspection system development Inverted signal-frequency detection and velocity measurement by self-coupling laser sensor array using modulation frequency difference Deep-learning-assisted single-shot 3D shape and color measurement using color fringe projection profilometry Camera calibration based on center circle and halfway line of sports ground and position estimation of moving target
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1