Venkatesh Rathinavelu, Viyat Varun Upadhyay, Rakesh Kumar, Vinayagam Mohanavel, Nagabhooshanam Nagarajan, Dhaval Rabadiya, Manzoore Elahi Mohammed Soudagar, Sami Al Obaid, Saleh Hussein Salmen
{"title":"Influences of anaerobic treatment on chemical oxygen demand removal behavior of tannery wastewater","authors":"Venkatesh Rathinavelu, Viyat Varun Upadhyay, Rakesh Kumar, Vinayagam Mohanavel, Nagabhooshanam Nagarajan, Dhaval Rabadiya, Manzoore Elahi Mohammed Soudagar, Sami Al Obaid, Saleh Hussein Salmen","doi":"10.1007/s10661-025-13905-x","DOIUrl":null,"url":null,"abstract":"<div><p>Syngas are produced from wastewater through anaerobic reactions and thermochemical processes, using a catalyst that modifies the gas composition, reduces methane production, and achieves partial COD reduction. The current research is attempting to treat the tannery wastewater via an anaerobic process configured with 0.25, 0.3, and 0.35 volume units of granular activated carbon (GAC) with 10 nm size to minimize the concentration of chemical oxygen demand (COD) and improve the biological methane yield. During this anaerobic process, the up-flow anaerobic sludge blanket (UASB) reactor supports to enhance the bio-methane production and handle the high rate of organic load. Influences of GAC units and operating time (days) on COD and biological methane yield of an anaerobic system for tannery wastewater treatment are studied and measured in their value. The output results of COD and biological methane yield are compared, and it was spotted that the tannery water process with 0.3 volume units of GAC owns 87% of COD removal with biological methane yield of 66.3 mL/day (7.2 mL/g COD removed) and end of 30th day found 1939 mL.</p></div>","PeriodicalId":544,"journal":{"name":"Environmental Monitoring and Assessment","volume":"197 4","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Monitoring and Assessment","FirstCategoryId":"93","ListUrlMain":"https://link.springer.com/article/10.1007/s10661-025-13905-x","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Syngas are produced from wastewater through anaerobic reactions and thermochemical processes, using a catalyst that modifies the gas composition, reduces methane production, and achieves partial COD reduction. The current research is attempting to treat the tannery wastewater via an anaerobic process configured with 0.25, 0.3, and 0.35 volume units of granular activated carbon (GAC) with 10 nm size to minimize the concentration of chemical oxygen demand (COD) and improve the biological methane yield. During this anaerobic process, the up-flow anaerobic sludge blanket (UASB) reactor supports to enhance the bio-methane production and handle the high rate of organic load. Influences of GAC units and operating time (days) on COD and biological methane yield of an anaerobic system for tannery wastewater treatment are studied and measured in their value. The output results of COD and biological methane yield are compared, and it was spotted that the tannery water process with 0.3 volume units of GAC owns 87% of COD removal with biological methane yield of 66.3 mL/day (7.2 mL/g COD removed) and end of 30th day found 1939 mL.
期刊介绍:
Environmental Monitoring and Assessment emphasizes technical developments and data arising from environmental monitoring and assessment, the use of scientific principles in the design of monitoring systems at the local, regional and global scales, and the use of monitoring data in assessing the consequences of natural resource management actions and pollution risks to man and the environment.