Combined Impacts of Self-Generated and Non-uniform Magnetic Fields on the Acceleration of Plasma

IF 1.5 4区 物理与天体物理 Q2 PHYSICS, MULTIDISCIPLINARY Brazilian Journal of Physics Pub Date : 2025-03-19 DOI:10.1007/s13538-025-01742-9
Mehdi Abedi-Varaki, Bahman Zohuri
{"title":"Combined Impacts of Self-Generated and Non-uniform Magnetic Fields on the Acceleration of Plasma","authors":"Mehdi Abedi-Varaki,&nbsp;Bahman Zohuri","doi":"10.1007/s13538-025-01742-9","DOIUrl":null,"url":null,"abstract":"<div><p>In the present study, the combined impacts of self-generated and non-uniform magnetic fields on the acceleration of plasma electrons using circularly polarized laser pulses propagating in plasma are theoretically studied under a strongly relativistic regime. Analytical and mathematical formulations for analyzing laser pulse propagation through plasma medium with consideration of the self-generated and non-uniform magnetic fields have been obtained. The simulation results show that in comparison to without a non-uniform magnetic field, electron energy increases with an increasing <i>δ</i>-parameter. Additionally, it is recognized that the existence of both non-uniform as well as self-generated magnetic fields simultaneously increases electron transverse momentum, which increases energy. Furthermore, it is observed that when the plasma is only dominated via the self-generated magnetic fields consisting of azimuthal and axial magnetic fields, plasma electrons accelerate much less than when a non-uniform magnetic field is employed. It is also shown that higher laser intensity results in a rise in electron energy, depending on the optimal laser field and self-consistent magnetic field. Moreover, it is realized that the amounts of the slope parameter and the magnetic field can be adjusted to control electron energy gain.</p></div>","PeriodicalId":499,"journal":{"name":"Brazilian Journal of Physics","volume":"55 3","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brazilian Journal of Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s13538-025-01742-9","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

In the present study, the combined impacts of self-generated and non-uniform magnetic fields on the acceleration of plasma electrons using circularly polarized laser pulses propagating in plasma are theoretically studied under a strongly relativistic regime. Analytical and mathematical formulations for analyzing laser pulse propagation through plasma medium with consideration of the self-generated and non-uniform magnetic fields have been obtained. The simulation results show that in comparison to without a non-uniform magnetic field, electron energy increases with an increasing δ-parameter. Additionally, it is recognized that the existence of both non-uniform as well as self-generated magnetic fields simultaneously increases electron transverse momentum, which increases energy. Furthermore, it is observed that when the plasma is only dominated via the self-generated magnetic fields consisting of azimuthal and axial magnetic fields, plasma electrons accelerate much less than when a non-uniform magnetic field is employed. It is also shown that higher laser intensity results in a rise in electron energy, depending on the optimal laser field and self-consistent magnetic field. Moreover, it is realized that the amounts of the slope parameter and the magnetic field can be adjusted to control electron energy gain.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Brazilian Journal of Physics
Brazilian Journal of Physics 物理-物理:综合
CiteScore
2.50
自引率
6.20%
发文量
189
审稿时长
6.0 months
期刊介绍: The Brazilian Journal of Physics is a peer-reviewed international journal published by the Brazilian Physical Society (SBF). The journal publishes new and original research results from all areas of physics, obtained in Brazil and from anywhere else in the world. Contents include theoretical, practical and experimental papers as well as high-quality review papers. Submissions should follow the generally accepted structure for journal articles with basic elements: title, abstract, introduction, results, conclusions, and references.
期刊最新文献
Interaction of Gardner Dust Ion-Acoustic Multiple Solitons in a Dusty Plasma: Insights from Cassini Observations Study of the 10B(d,3He)9Be Reaction at a Deuterons Energy of 14.5 MeV Combined Impacts of Self-Generated and Non-uniform Magnetic Fields on the Acceleration of Plasma Exploring the Structural, Optoelectronic, Transport, and Radiation Shielding Capabilities of Al-based Chalcogenides for Energy Technologies: Spin Polarized Approach Thermal, Optical, and Structural Properties of Eu3+-Doped TiO2 Nanophosphors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1