Regulatory Interactions between APOBEC3B N- and C-Terminal Domains.

IF 5.6 2区 化学 Q1 CHEMISTRY, MEDICINAL Journal of Chemical Information and Modeling Pub Date : 2025-03-19 DOI:10.1021/acs.jcim.4c02272
Mac Kevin E Braza, Özlem Demir, Surl-Hee Ahn, Clare K Morris, Carla Calvó-Tusell, Kelly L McGuire, Bárbara de la Peña Avalos, Michael A Carpenter, Yanjun Chen, Lorenzo Casalino, Hideki Aihara, Mark A Herzik, Reuben S Harris, Rommie E Amaro
{"title":"Regulatory Interactions between APOBEC3B N- and C-Terminal Domains.","authors":"Mac Kevin E Braza, Özlem Demir, Surl-Hee Ahn, Clare K Morris, Carla Calvó-Tusell, Kelly L McGuire, Bárbara de la Peña Avalos, Michael A Carpenter, Yanjun Chen, Lorenzo Casalino, Hideki Aihara, Mark A Herzik, Reuben S Harris, Rommie E Amaro","doi":"10.1021/acs.jcim.4c02272","DOIUrl":null,"url":null,"abstract":"<p><p>APOBEC3B (A3B) is implicated in DNA mutations that facilitate tumor evolution. Although structures of its individual N- and C-terminal domains (NTD and CTD) have been resolved through X-ray crystallography, the full-length A3B (fl-A3B) structure remains elusive, limiting our understanding of its dynamics and mechanisms. In particular, the APOBEC3B C-terminal domain (A3Bctd) is frequently closed in models and structures. In this study, we built several new models of fl-A3B using integrative structural biology methods and selected a top model for further dynamical investigation. We compared the dynamics of the truncated (A3Bctd) to that of the fl-A3B via conventional and Gaussian accelerated molecular dynamics (MD) simulations. Subsequently, we employed weighted ensemble methods to explore the fl-A3B active site opening mechanism, finding that interactions at the NTD-CTD interface enhance the opening frequency of the fl-A3B active site. Our findings shed light on the structural dynamics and potential druggability of fl-A3B, including observations regarding both the active and allosteric sites, which may offer new avenues for therapeutic intervention in cancer.</p>","PeriodicalId":44,"journal":{"name":"Journal of Chemical Information and Modeling ","volume":" ","pages":""},"PeriodicalIF":5.6000,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Information and Modeling ","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.jcim.4c02272","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

Abstract

APOBEC3B (A3B) is implicated in DNA mutations that facilitate tumor evolution. Although structures of its individual N- and C-terminal domains (NTD and CTD) have been resolved through X-ray crystallography, the full-length A3B (fl-A3B) structure remains elusive, limiting our understanding of its dynamics and mechanisms. In particular, the APOBEC3B C-terminal domain (A3Bctd) is frequently closed in models and structures. In this study, we built several new models of fl-A3B using integrative structural biology methods and selected a top model for further dynamical investigation. We compared the dynamics of the truncated (A3Bctd) to that of the fl-A3B via conventional and Gaussian accelerated molecular dynamics (MD) simulations. Subsequently, we employed weighted ensemble methods to explore the fl-A3B active site opening mechanism, finding that interactions at the NTD-CTD interface enhance the opening frequency of the fl-A3B active site. Our findings shed light on the structural dynamics and potential druggability of fl-A3B, including observations regarding both the active and allosteric sites, which may offer new avenues for therapeutic intervention in cancer.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
相关文献
Multiple-interactions among EMILIN1 and EMILIN2 N- and C-terminal domains
IF 6.9 1区 生物学Matrix BiologyPub Date : 2015-01-01 DOI: 10.1016/j.matbio.2014.10.001
Simonetta Bot , Eva Andreuzzi , Alessandra Capuano , Alvise Schiavinato , Alfonso Colombatti , Roberto Doliana
Regulatory interactions between APOBEC3B N- and C-terminal domains.
IF 0 bioRxiv : the preprint server for biologyPub Date : 2024-12-12 DOI: 10.1101/2024.12.11.628032
Mac Kevin E Braza, Özlem Demir, Surl-Hee Ahn, Clare K Morris, Carla Calvó-Tusell, Kelly L McGuire, Bárbara de la Peña Avalos, Michael A Carpenter, Yanjun Chen, Lorenzo Casalino, Hideki Aihara, Mark A Herzik, Reuben S Harris, Rommie E Amaro
来源期刊
CiteScore
9.80
自引率
10.70%
发文量
529
审稿时长
1.4 months
期刊介绍: The Journal of Chemical Information and Modeling publishes papers reporting new methodology and/or important applications in the fields of chemical informatics and molecular modeling. Specific topics include the representation and computer-based searching of chemical databases, molecular modeling, computer-aided molecular design of new materials, catalysts, or ligands, development of new computational methods or efficient algorithms for chemical software, and biopharmaceutical chemistry including analyses of biological activity and other issues related to drug discovery. Astute chemists, computer scientists, and information specialists look to this monthly’s insightful research studies, programming innovations, and software reviews to keep current with advances in this integral, multidisciplinary field. As a subscriber you’ll stay abreast of database search systems, use of graph theory in chemical problems, substructure search systems, pattern recognition and clustering, analysis of chemical and physical data, molecular modeling, graphics and natural language interfaces, bibliometric and citation analysis, and synthesis design and reactions databases.
期刊最新文献
Investigation of Electrostatic Effects on Enyzme Catalysis: Insights from Computational Simulations of Monoamine Oxidase A Pathological Variants Leading to the Brunner Syndrome. Relative Binding Free Energy Estimation of Congeneric Ligands and Macromolecular Mutants with the Alchemical Transfer Method with Coordinate Swapping. UANanoDock: A Web-Based UnitedAtom Multiscale Nanodocking Tool for Predicting Protein Adsorption onto Nanoparticles. Issue Editorial Masthead Issue Publication Information
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1