Mac Kevin E Braza, Özlem Demir, Surl-Hee Ahn, Clare K Morris, Carla Calvó-Tusell, Kelly L McGuire, Bárbara de la Peña Avalos, Michael A Carpenter, Yanjun Chen, Lorenzo Casalino, Hideki Aihara, Mark A Herzik, Reuben S Harris, Rommie E Amaro
{"title":"Regulatory Interactions between APOBEC3B N- and C-Terminal Domains.","authors":"Mac Kevin E Braza, Özlem Demir, Surl-Hee Ahn, Clare K Morris, Carla Calvó-Tusell, Kelly L McGuire, Bárbara de la Peña Avalos, Michael A Carpenter, Yanjun Chen, Lorenzo Casalino, Hideki Aihara, Mark A Herzik, Reuben S Harris, Rommie E Amaro","doi":"10.1021/acs.jcim.4c02272","DOIUrl":null,"url":null,"abstract":"<p><p>APOBEC3B (A3B) is implicated in DNA mutations that facilitate tumor evolution. Although structures of its individual N- and C-terminal domains (NTD and CTD) have been resolved through X-ray crystallography, the full-length A3B (fl-A3B) structure remains elusive, limiting our understanding of its dynamics and mechanisms. In particular, the APOBEC3B C-terminal domain (A3Bctd) is frequently closed in models and structures. In this study, we built several new models of fl-A3B using integrative structural biology methods and selected a top model for further dynamical investigation. We compared the dynamics of the truncated (A3Bctd) to that of the fl-A3B via conventional and Gaussian accelerated molecular dynamics (MD) simulations. Subsequently, we employed weighted ensemble methods to explore the fl-A3B active site opening mechanism, finding that interactions at the NTD-CTD interface enhance the opening frequency of the fl-A3B active site. Our findings shed light on the structural dynamics and potential druggability of fl-A3B, including observations regarding both the active and allosteric sites, which may offer new avenues for therapeutic intervention in cancer.</p>","PeriodicalId":44,"journal":{"name":"Journal of Chemical Information and Modeling ","volume":" ","pages":""},"PeriodicalIF":5.6000,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Information and Modeling ","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.jcim.4c02272","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
Abstract
APOBEC3B (A3B) is implicated in DNA mutations that facilitate tumor evolution. Although structures of its individual N- and C-terminal domains (NTD and CTD) have been resolved through X-ray crystallography, the full-length A3B (fl-A3B) structure remains elusive, limiting our understanding of its dynamics and mechanisms. In particular, the APOBEC3B C-terminal domain (A3Bctd) is frequently closed in models and structures. In this study, we built several new models of fl-A3B using integrative structural biology methods and selected a top model for further dynamical investigation. We compared the dynamics of the truncated (A3Bctd) to that of the fl-A3B via conventional and Gaussian accelerated molecular dynamics (MD) simulations. Subsequently, we employed weighted ensemble methods to explore the fl-A3B active site opening mechanism, finding that interactions at the NTD-CTD interface enhance the opening frequency of the fl-A3B active site. Our findings shed light on the structural dynamics and potential druggability of fl-A3B, including observations regarding both the active and allosteric sites, which may offer new avenues for therapeutic intervention in cancer.
Mac Kevin E Braza, Özlem Demir, Surl-Hee Ahn, Clare K Morris, Carla Calvó-Tusell, Kelly L McGuire, Bárbara de la Peña Avalos, Michael A Carpenter, Yanjun Chen, Lorenzo Casalino, Hideki Aihara, Mark A Herzik, Reuben S Harris, Rommie E Amaro
期刊介绍:
The Journal of Chemical Information and Modeling publishes papers reporting new methodology and/or important applications in the fields of chemical informatics and molecular modeling. Specific topics include the representation and computer-based searching of chemical databases, molecular modeling, computer-aided molecular design of new materials, catalysts, or ligands, development of new computational methods or efficient algorithms for chemical software, and biopharmaceutical chemistry including analyses of biological activity and other issues related to drug discovery.
Astute chemists, computer scientists, and information specialists look to this monthly’s insightful research studies, programming innovations, and software reviews to keep current with advances in this integral, multidisciplinary field.
As a subscriber you’ll stay abreast of database search systems, use of graph theory in chemical problems, substructure search systems, pattern recognition and clustering, analysis of chemical and physical data, molecular modeling, graphics and natural language interfaces, bibliometric and citation analysis, and synthesis design and reactions databases.