Molecular Properties of Hydroxyamino Acids in Water.

IF 2.7 2区 化学 Q3 CHEMISTRY, PHYSICAL The Journal of Physical Chemistry A Pub Date : 2025-03-19 DOI:10.1021/acs.jpca.5c00701
Roman Boča, Žofia Rádiková, Juraj Štofko, Beata Vranovičová, Cyril Rajnák
{"title":"Molecular Properties of Hydroxyamino Acids in Water.","authors":"Roman Boča, Žofia Rádiková, Juraj Štofko, Beata Vranovičová, Cyril Rajnák","doi":"10.1021/acs.jpca.5c00701","DOIUrl":null,"url":null,"abstract":"<p><p>Aliphatic hydroxyamino acids, namely, α-hydroxyglycine, α-hydroxyalanine, serine, threonine, and homoserine, were studied by quantum chemical calculations using two methods in water as a solvent. A hybrid variant of DFT-B3LYP was applied to optimize the geometry of neutral molecules, molecular cations, and anions for the canonical and zwitterionic form of amino acids. In the energy minimum, vibrational analysis was applied, enabling the evaluation of thermodynamic functions (internal energy, enthalpy, entropy, and Gibbs energy) of individual species and absolute oxidation and reduction potentials for redox couples. In the B3LYP preoptimized geometry, the advanced DLPNO-CCSD(T) method was applied to include the major part of the interelectron correlation energy. Calculated molecular descriptors were compared with previously studied molecules by the same method, and the whole set for 17 amino acids was processed by advanced statistical methods such as cluster analysis and principal component analysis. Calculated oxidation potentials correlate with the adiabatic ionization energies along a straight line, and analogously, the calculated reduction potential correlates with the electrophilicity index. The ionization energy in α-amino acids is systematically influenced (reduced) by the functional groups such as hydroxyl, methyl, ethyl, and <i>iso</i>-propyl; it decreases along a series of α-, β-, γ-, and δ-amino acids.</p>","PeriodicalId":59,"journal":{"name":"The Journal of Physical Chemistry A","volume":" ","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry A","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.jpca.5c00701","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Aliphatic hydroxyamino acids, namely, α-hydroxyglycine, α-hydroxyalanine, serine, threonine, and homoserine, were studied by quantum chemical calculations using two methods in water as a solvent. A hybrid variant of DFT-B3LYP was applied to optimize the geometry of neutral molecules, molecular cations, and anions for the canonical and zwitterionic form of amino acids. In the energy minimum, vibrational analysis was applied, enabling the evaluation of thermodynamic functions (internal energy, enthalpy, entropy, and Gibbs energy) of individual species and absolute oxidation and reduction potentials for redox couples. In the B3LYP preoptimized geometry, the advanced DLPNO-CCSD(T) method was applied to include the major part of the interelectron correlation energy. Calculated molecular descriptors were compared with previously studied molecules by the same method, and the whole set for 17 amino acids was processed by advanced statistical methods such as cluster analysis and principal component analysis. Calculated oxidation potentials correlate with the adiabatic ionization energies along a straight line, and analogously, the calculated reduction potential correlates with the electrophilicity index. The ionization energy in α-amino acids is systematically influenced (reduced) by the functional groups such as hydroxyl, methyl, ethyl, and iso-propyl; it decreases along a series of α-, β-, γ-, and δ-amino acids.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
The Journal of Physical Chemistry A
The Journal of Physical Chemistry A 化学-物理:原子、分子和化学物理
CiteScore
5.20
自引率
10.30%
发文量
922
审稿时长
1.3 months
期刊介绍: The Journal of Physical Chemistry A is devoted to reporting new and original experimental and theoretical basic research of interest to physical chemists, biophysical chemists, and chemical physicists.
期刊最新文献
Issue Publication Information Issue Editorial Masthead Systematic Study of Hard-Wall Confinement-Induced Effects on Atomic Electronic Structure. Unraveling the Geometrical Effects on Singlet Fission of Carotenoids: A Model Perspective. A Theoretical Study of Radical Formation Mechanisms in PET-RAFT Polymerization Using Porphyrins as Photoredox Catalysts.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1