Christoph Selg, Robert Schuster, Aleksandr Kazimir, Peter Lönnecke, Mara Wolniewicz, Jonas Schädlich, Markus Laube, Jens Pietzsch, Vuk Gordić, Tamara Krajnović, Sanja Mijatović, Danijela Maksimović-Ivanić, Evamarie Hey-Hawkins
{"title":"Advances in Diclofenac Derivatives: Exploring Carborane-Substituted N-Methyl and Nitrile Analogs for Anti-Cancer Therapy.","authors":"Christoph Selg, Robert Schuster, Aleksandr Kazimir, Peter Lönnecke, Mara Wolniewicz, Jonas Schädlich, Markus Laube, Jens Pietzsch, Vuk Gordić, Tamara Krajnović, Sanja Mijatović, Danijela Maksimović-Ivanić, Evamarie Hey-Hawkins","doi":"10.1002/cmdc.202500084","DOIUrl":null,"url":null,"abstract":"<p><p>This study explores the anti-cancer potential of N-methylated open-ring derivatives of carborane-substituted diclofenac analogs. By N-methylation, the open-chain form could be trapped and cyclization back to lactam or amidine derivatives was inhibited. A small library of carborane- and phenyl-based secondary and tertiary arylamines bearing carboxylic acid or nitrile groups was synthesized and analyzed for their COX-affinity in vitro and in silico. The compounds were further evaluated against mouse adenocarcinoma (MC38), human colorectal carcinoma (HCT116) and human colorectal adenocarcinoma (HT29) cell lines and showed potent cytotoxicity. Additional biological assessments of the mode of action were performed using flow cytometric techniques and fluorescence microscopy. The data obtained revealed a common antiproliferative effect coupled with the induction of caspase-independent apoptosis and the specific effects of the compound on the phenotype of MC38 cells, resulting in impaired cell viability of MC38 cells and satisfactory selectivity exceeding the antitumor activity of diclofenac.</p>","PeriodicalId":147,"journal":{"name":"ChemMedChem","volume":" ","pages":"e202500084"},"PeriodicalIF":3.6000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemMedChem","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/cmdc.202500084","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
Abstract
This study explores the anti-cancer potential of N-methylated open-ring derivatives of carborane-substituted diclofenac analogs. By N-methylation, the open-chain form could be trapped and cyclization back to lactam or amidine derivatives was inhibited. A small library of carborane- and phenyl-based secondary and tertiary arylamines bearing carboxylic acid or nitrile groups was synthesized and analyzed for their COX-affinity in vitro and in silico. The compounds were further evaluated against mouse adenocarcinoma (MC38), human colorectal carcinoma (HCT116) and human colorectal adenocarcinoma (HT29) cell lines and showed potent cytotoxicity. Additional biological assessments of the mode of action were performed using flow cytometric techniques and fluorescence microscopy. The data obtained revealed a common antiproliferative effect coupled with the induction of caspase-independent apoptosis and the specific effects of the compound on the phenotype of MC38 cells, resulting in impaired cell viability of MC38 cells and satisfactory selectivity exceeding the antitumor activity of diclofenac.
期刊介绍:
Quality research. Outstanding publications. With an impact factor of 3.124 (2019), ChemMedChem is a top journal for research at the interface of chemistry, biology and medicine. It is published on behalf of Chemistry Europe, an association of 16 European chemical societies.
ChemMedChem publishes primary as well as critical secondary and tertiary information from authors across and for the world. Its mission is to integrate the wide and flourishing field of medicinal and pharmaceutical sciences, ranging from drug design and discovery to drug development and delivery, from molecular modeling to combinatorial chemistry, from target validation to lead generation and ADMET studies. ChemMedChem typically covers topics on small molecules, therapeutic macromolecules, peptides, peptidomimetics, and aptamers, protein-drug conjugates, nucleic acid therapies, and beginning 2017, nanomedicine, particularly 1) targeted nanodelivery, 2) theranostic nanoparticles, and 3) nanodrugs.
Contents
ChemMedChem publishes an attractive mixture of:
Full Papers and Communications
Reviews and Minireviews
Patent Reviews
Highlights and Concepts
Book and Multimedia Reviews.