Cellular immune changes during severe antisense oligonucleotide-associated thrombocytopenia in a nonhuman primate model.

IF 3.6 3区 医学 Q2 IMMUNOLOGY Journal of immunology Pub Date : 2025-03-18 DOI:10.1093/jimmun/vkae055
Sheena Gupta, Lijiang Shen, Scott P Henry, Nima Aghaeepour, Padmakumar Narayanan, Holden T Maecker
{"title":"Cellular immune changes during severe antisense oligonucleotide-associated thrombocytopenia in a nonhuman primate model.","authors":"Sheena Gupta, Lijiang Shen, Scott P Henry, Nima Aghaeepour, Padmakumar Narayanan, Holden T Maecker","doi":"10.1093/jimmun/vkae055","DOIUrl":null,"url":null,"abstract":"<p><p>Antisense oligonucleotides (ASOs) are a new class of single-stranded DNA-based drugs that hold great therapeutic potential. A low incidence of severe, dose-dependent, and reversible thrombocytopenia (TCP) (platelets < 50 K/μl) has been reported in nonhuman primate (NHP) populations, following treatment of monkeys with 2'-O-methoxy ethyl ASOs (2% to 4% at doses > 8 to 10 mg/kg/week). The potential mechanisms for this effect were studied using the Mauritian-sourced NHPs, which were shown to be more susceptible to ASO-induced TCP than Asian-sourced animals. In this pilot study, we used a mass cytometry-based intracellular cytokine staining assay, to evaluate the immune-phenotypic and functional changes in cryopreserved PBMCs, collected over 8 time points of ASO therapy (ISIS 405879) from 12 Cambodian and 12 Mauritian monkeys (9 treated and 3 controls). Unsupervised clustering was performed across markers used for cell type identification in the pooled dataset, followed by unsupervised comparison at each time point and then longitudinal analysis. Major immune cell types showed differential abundance between the 2 groups prior to start of ASO therapy. These included IFNg- and TNF-producing polyfunctional effector T cells (CD4+ and CD8+), which were lower, and MIP1b-producing monocytes and DCs, which were higher, in the Mauritian monkeys. Immune populations also changed over the course of this treatment, wherein IL-17- and GM-CSF-producing T cells and IgM-producing B cells increased markedly in Mauritians. Identification of these differentially abundant immune cell subsets in treatment sensitive NHPs could help decipher potential immune mechanisms contributing to severe TCP observed during administration of specific ASO sequences in humans.</p>","PeriodicalId":16045,"journal":{"name":"Journal of immunology","volume":" ","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of immunology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/jimmun/vkae055","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Antisense oligonucleotides (ASOs) are a new class of single-stranded DNA-based drugs that hold great therapeutic potential. A low incidence of severe, dose-dependent, and reversible thrombocytopenia (TCP) (platelets < 50 K/μl) has been reported in nonhuman primate (NHP) populations, following treatment of monkeys with 2'-O-methoxy ethyl ASOs (2% to 4% at doses > 8 to 10 mg/kg/week). The potential mechanisms for this effect were studied using the Mauritian-sourced NHPs, which were shown to be more susceptible to ASO-induced TCP than Asian-sourced animals. In this pilot study, we used a mass cytometry-based intracellular cytokine staining assay, to evaluate the immune-phenotypic and functional changes in cryopreserved PBMCs, collected over 8 time points of ASO therapy (ISIS 405879) from 12 Cambodian and 12 Mauritian monkeys (9 treated and 3 controls). Unsupervised clustering was performed across markers used for cell type identification in the pooled dataset, followed by unsupervised comparison at each time point and then longitudinal analysis. Major immune cell types showed differential abundance between the 2 groups prior to start of ASO therapy. These included IFNg- and TNF-producing polyfunctional effector T cells (CD4+ and CD8+), which were lower, and MIP1b-producing monocytes and DCs, which were higher, in the Mauritian monkeys. Immune populations also changed over the course of this treatment, wherein IL-17- and GM-CSF-producing T cells and IgM-producing B cells increased markedly in Mauritians. Identification of these differentially abundant immune cell subsets in treatment sensitive NHPs could help decipher potential immune mechanisms contributing to severe TCP observed during administration of specific ASO sequences in humans.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of immunology
Journal of immunology 医学-免疫学
CiteScore
8.20
自引率
2.30%
发文量
495
审稿时长
1 months
期刊介绍: The JI publishes novel, peer-reviewed findings in all areas of experimental immunology, including innate and adaptive immunity, inflammation, host defense, clinical immunology, autoimmunity and more. Special sections include Cutting Edge articles, Brief Reviews and Pillars of Immunology. The JI is published by The American Association of Immunologists (AAI)
期刊最新文献
B cells and aging: a historical perspective. IL-7Rα signaling in regulatory T cells of adipose tissue is essential for systemic glucose homeostasis. A genetically modulated Toll-like receptor-tolerant phenotype in peripheral blood cells of children with multisystem inflammatory syndrome. Cathelicidin-related antimicrobial peptide (CRAMP) is toxic during neonatal murine influenza virus infection. CD209d/e are required for macrophage-mediated phagocytosis and activation during methicillin-resistant Staphylococcus aureus pulmonary host defense.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1