High-frequency vessel noise can mask porpoise echolocation.

IF 2.8 2区 生物学 Q2 BIOLOGY Journal of Experimental Biology Pub Date : 2025-03-15 Epub Date: 2025-03-19 DOI:10.1242/jeb.249963
Line Hermannsen, Michael Ladegaard, Pernille Tønnesen, Chloe Malinka, Kristian Beedholm, Jakob Tougaard, Laia Rojano-Doñate, Peter L Tyack, Peter T Madsen
{"title":"High-frequency vessel noise can mask porpoise echolocation.","authors":"Line Hermannsen, Michael Ladegaard, Pernille Tønnesen, Chloe Malinka, Kristian Beedholm, Jakob Tougaard, Laia Rojano-Doñate, Peter L Tyack, Peter T Madsen","doi":"10.1242/jeb.249963","DOIUrl":null,"url":null,"abstract":"<p><p>Ultrasonic cavitation noise from fast vessels overlaps spectrally with echolocation clicks of toothed whales and therefore has the potential to degrade echolocation performance through auditory masking of returning echoes. Here, we tested that hypothesis by exposing two trained echolocating porpoises carrying DTAGs to two different levels of decidecade noise centered on 2 kHz (non-masking) and 125 kHz (masking) during an active target discrimination task. We found no click level adjustments or effects on discrimination performance in trials with non-masking noise or low-level masking noise. However, when exposed to high-level masking noise of 113±3 dB re. 1 µPa root mean square (RMS), the porpoises increased their mean click source levels by 7-17 dB. Despite this Lombard response of 0.2-0.5 dBsignal/dBnoise, and longer time and more clicks used by the porpoises to perform the task in noise, both animals were still significantly poorer at discriminating the targets (64-85% success rate) than in the other treatments (94-100%), thus demonstrating adverse masking effects. When the porpoises were offered spatial release from masking by relocating the noise source off-axis relative to the animal-to-target axis, echolocation performance was regained. We conclude that moderate levels of high-frequency noise, such as from cavitating vessel propellers several hundred meters from a vessel, can mask porpoise echolocation in a way that cannot be fully compensated for. As biosonar is vital for foraging and navigation around hazards such as gillnets for porpoises and other toothed whales, this study highlights that masking effects should be considered in impact assessments of cavitating vessels around echolocating toothed whales.</p>","PeriodicalId":15786,"journal":{"name":"Journal of Experimental Biology","volume":"228 6","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Experimental Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1242/jeb.249963","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/19 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Ultrasonic cavitation noise from fast vessels overlaps spectrally with echolocation clicks of toothed whales and therefore has the potential to degrade echolocation performance through auditory masking of returning echoes. Here, we tested that hypothesis by exposing two trained echolocating porpoises carrying DTAGs to two different levels of decidecade noise centered on 2 kHz (non-masking) and 125 kHz (masking) during an active target discrimination task. We found no click level adjustments or effects on discrimination performance in trials with non-masking noise or low-level masking noise. However, when exposed to high-level masking noise of 113±3 dB re. 1 µPa root mean square (RMS), the porpoises increased their mean click source levels by 7-17 dB. Despite this Lombard response of 0.2-0.5 dBsignal/dBnoise, and longer time and more clicks used by the porpoises to perform the task in noise, both animals were still significantly poorer at discriminating the targets (64-85% success rate) than in the other treatments (94-100%), thus demonstrating adverse masking effects. When the porpoises were offered spatial release from masking by relocating the noise source off-axis relative to the animal-to-target axis, echolocation performance was regained. We conclude that moderate levels of high-frequency noise, such as from cavitating vessel propellers several hundred meters from a vessel, can mask porpoise echolocation in a way that cannot be fully compensated for. As biosonar is vital for foraging and navigation around hazards such as gillnets for porpoises and other toothed whales, this study highlights that masking effects should be considered in impact assessments of cavitating vessels around echolocating toothed whales.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
5.50
自引率
10.70%
发文量
494
审稿时长
1 months
期刊介绍: Journal of Experimental Biology is the leading primary research journal in comparative physiology and publishes papers on the form and function of living organisms at all levels of biological organisation, from the molecular and subcellular to the integrated whole animal.
期刊最新文献
Expansion of Drosophila haemocytes using a conditional GeneSwitch driver affects larval haemocyte function, but does not modulate adult lifespan or survival after severe infection. Multigenerational exposure to glyphosate has only modest effects on life history traits, stress tolerance, and microbiome in a field cricket. Gene expression and enzyme activity analysis of carbohydrate digestion in Strongylocentrotus purpuratus larvae. Co-option of immune and digestive cellular machinery to support photosymbiosis in amoebocytes of the upside-down jellyfish Cassiopea xamachana. Comparative mechanical and elastic properties of the doral and ventral tendons in the peduncle of harbor porpoise (Phocoena phocoena).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1