Imputation of missing clock times - application to procalcitonin concentration time course after birth.

IF 2.8 4区 医学 Q3 PHARMACOLOGY & PHARMACY Journal of Pharmacokinetics and Pharmacodynamics Pub Date : 2025-03-18 DOI:10.1007/s10928-025-09965-8
Abigail J Bokor, Nick Holford, Jacqueline A Hannam
{"title":"Imputation of missing clock times - application to procalcitonin concentration time course after birth.","authors":"Abigail J Bokor, Nick Holford, Jacqueline A Hannam","doi":"10.1007/s10928-025-09965-8","DOIUrl":null,"url":null,"abstract":"<p><p>The time course of biomarkers (e.g., acute phase proteins) are typically described using days relative to events of interest, such as surgery or birth, without specifying the sample time. This limits their use as they may change rapidly during a single day. We investigated strategies to impute missing clock times, using procalcitonin for population modelling as the motivating example. 1275 procalcitonin concentrations from 282 neonates were available with dates but not sample times (Scenario 0). Missing clock times were imputed using a random uniform distribution under three scenarios: (1) minimum sampling intervals (8-12 h); (2) procalcitonin concentrations increase for postnatal days 0-1 then decrease; (3) standard sampling practice at the study hospital. Unique datasets (n = 100) were created with scenario-specific imputed clock times. Procalcitonin was modelled for each scenario using the same non-linear mixed effects model using NONMEM. Scenarios were evaluated by the NONMEM objective function value compared to Scenario 0 (∆OFV) and with visual predictive checks. Scenario 3, based on standard sampling practice at the study hospital, was the best imputation procedure with an improved objective function value compared to Scenario 0 (∆OFV: -62.6). Scenario 3 showed a shorter lag time between the birth event and the procalcitonin concentration increase (average: 12.0 h, 95% interval: 9.7 to 14.3 h) compared to other scenarios (averages: 15.3 to 18.7 h). A methodology for selecting imputation strategies for clock times was developed. This may be applied to other problems where clock times are missing.</p>","PeriodicalId":16851,"journal":{"name":"Journal of Pharmacokinetics and Pharmacodynamics","volume":"52 2","pages":"20"},"PeriodicalIF":2.8000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11920349/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Pharmacokinetics and Pharmacodynamics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10928-025-09965-8","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

Abstract

The time course of biomarkers (e.g., acute phase proteins) are typically described using days relative to events of interest, such as surgery or birth, without specifying the sample time. This limits their use as they may change rapidly during a single day. We investigated strategies to impute missing clock times, using procalcitonin for population modelling as the motivating example. 1275 procalcitonin concentrations from 282 neonates were available with dates but not sample times (Scenario 0). Missing clock times were imputed using a random uniform distribution under three scenarios: (1) minimum sampling intervals (8-12 h); (2) procalcitonin concentrations increase for postnatal days 0-1 then decrease; (3) standard sampling practice at the study hospital. Unique datasets (n = 100) were created with scenario-specific imputed clock times. Procalcitonin was modelled for each scenario using the same non-linear mixed effects model using NONMEM. Scenarios were evaluated by the NONMEM objective function value compared to Scenario 0 (∆OFV) and with visual predictive checks. Scenario 3, based on standard sampling practice at the study hospital, was the best imputation procedure with an improved objective function value compared to Scenario 0 (∆OFV: -62.6). Scenario 3 showed a shorter lag time between the birth event and the procalcitonin concentration increase (average: 12.0 h, 95% interval: 9.7 to 14.3 h) compared to other scenarios (averages: 15.3 to 18.7 h). A methodology for selecting imputation strategies for clock times was developed. This may be applied to other problems where clock times are missing.

Abstract Image

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
缺失时钟时间的输入-应用于出生后降钙素原浓度时间过程。
生物标志物(如急性期蛋白)的时间过程通常使用相对于感兴趣的事件(如手术或出生)的天数来描述,而不指定采样时间。这限制了它们的使用,因为它们可能在一天内迅速变化。我们研究了输入缺失时钟时间的策略,使用降钙素原进行人口建模作为激励示例。282名新生儿的1275个降钙素原浓度有日期,但没有采样时间(场景0)。缺失的时钟时间在三种情况下使用随机均匀分布进行计算:(1)最小采样间隔(8-12小时);(2)降钙素原浓度在出生后0 ~ 1天先升高后降低;(3)研究医院的标准抽样实践。使用场景特定的输入时钟时间创建唯一数据集(n = 100)。使用NONMEM的非线性混合效应模型对每种情况下的降钙素原进行建模。通过与情景0(∆OFV)相比的NONMEM目标函数值和视觉预测检查来评估各情景。根据研究医院的标准抽样实践,与方案0(∆OFV: -62.6)相比,方案3的目标函数值有所提高,是最佳的代入程序。与其他情景(平均15.3至18.7小时)相比,情景3显示出生事件与降钙素原浓度增加之间的滞后时间较短(平均12.0小时,95%间隔:9.7至14.3小时)。开发了一种选择时钟时间的输入策略的方法。这可能适用于时钟时间缺失的其他问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
4.90
自引率
4.00%
发文量
39
审稿时长
6-12 weeks
期刊介绍: Broadly speaking, the Journal of Pharmacokinetics and Pharmacodynamics covers the area of pharmacometrics. The journal is devoted to illustrating the importance of pharmacokinetics, pharmacodynamics, and pharmacometrics in drug development, clinical care, and the understanding of drug action. The journal publishes on a variety of topics related to pharmacometrics, including, but not limited to, clinical, experimental, and theoretical papers examining the kinetics of drug disposition and effects of drug action in humans, animals, in vitro, or in silico; modeling and simulation methodology, including optimal design; precision medicine; systems pharmacology; and mathematical pharmacology (including computational biology, bioengineering, and biophysics related to pharmacology, pharmacokinetics, orpharmacodynamics). Clinical papers that include population pharmacokinetic-pharmacodynamic relationships are welcome. The journal actively invites and promotes up-and-coming areas of pharmacometric research, such as real-world evidence, quality of life analyses, and artificial intelligence. The Journal of Pharmacokinetics and Pharmacodynamics is an official journal of the International Society of Pharmacometrics.
期刊最新文献
Risks encountered when not adjusting for diurnal variation and food effect in QTcF analysis based on phase I data. Correction to: An automated pipeline to generate initial estimates for population Pharmacokinetic base models. Catalyzing change in MID3 through globalization, education, and innovation. Aggregate data modelling: A fast implementation for fitting pharmacometrics models to summary-level data in R. Identification and characterization of virtual sub-populations through phenotype-guided filtering. The challenging case of nonidentifiable models in the context of therapeutic evaluation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1