A high-resolution and whole-body dataset of hand-object contact areas based on 3D scanning method.

IF 5.8 2区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES Scientific Data Pub Date : 2025-03-18 DOI:10.1038/s41597-025-04770-x
Zelin Chen, Hanlu Chen, Yiming Ouyang, Chenhao Cao, Wei Gao, Qiqiang Hu, Hu Jin, Shiwu Zhang
{"title":"A high-resolution and whole-body dataset of hand-object contact areas based on 3D scanning method.","authors":"Zelin Chen, Hanlu Chen, Yiming Ouyang, Chenhao Cao, Wei Gao, Qiqiang Hu, Hu Jin, Shiwu Zhang","doi":"10.1038/s41597-025-04770-x","DOIUrl":null,"url":null,"abstract":"<p><p>Hand contact data, reflecting the intricate behaviours of human hands during object operation, exhibits significant potential for analysing hand operation patterns to guide the design of hand-related sensors and robots, and predicting object properties. However, these potential applications are hindered by the constraints of low resolution and incomplete capture of the hand contact data. Leveraging a non-contact and high-precision 3D scanning method for surface capture, a high-resolution and whole-body hand contact dataset, named as Ti3D-contact, is constructed in this work. The dataset, with an average resolution of 0.72 mm, contains 1872 sets of texture images and 3D models. The contact area during hand operation is whole-body painted on gloves, which are captured as the high-resolution original hand contact data through a 3D scanner. Reliability validation on Ti3D-contact is conducted and hand movement classification with 95% precision is achieved using the acquired hand contact dataset. The properties of high-resolution and whole-body capturing make the acquired dataset exhibit a promising potential application in hand posture recognition and hand movement prediction.</p>","PeriodicalId":21597,"journal":{"name":"Scientific Data","volume":"12 1","pages":"451"},"PeriodicalIF":5.8000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Data","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41597-025-04770-x","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Hand contact data, reflecting the intricate behaviours of human hands during object operation, exhibits significant potential for analysing hand operation patterns to guide the design of hand-related sensors and robots, and predicting object properties. However, these potential applications are hindered by the constraints of low resolution and incomplete capture of the hand contact data. Leveraging a non-contact and high-precision 3D scanning method for surface capture, a high-resolution and whole-body hand contact dataset, named as Ti3D-contact, is constructed in this work. The dataset, with an average resolution of 0.72 mm, contains 1872 sets of texture images and 3D models. The contact area during hand operation is whole-body painted on gloves, which are captured as the high-resolution original hand contact data through a 3D scanner. Reliability validation on Ti3D-contact is conducted and hand movement classification with 95% precision is achieved using the acquired hand contact dataset. The properties of high-resolution and whole-body capturing make the acquired dataset exhibit a promising potential application in hand posture recognition and hand movement prediction.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Scientific Data
Scientific Data Social Sciences-Education
CiteScore
11.20
自引率
4.10%
发文量
689
审稿时长
16 weeks
期刊介绍: Scientific Data is an open-access journal focused on data, publishing descriptions of research datasets and articles on data sharing across natural sciences, medicine, engineering, and social sciences. Its goal is to enhance the sharing and reuse of scientific data, encourage broader data sharing, and acknowledge those who share their data. The journal primarily publishes Data Descriptors, which offer detailed descriptions of research datasets, including data collection methods and technical analyses validating data quality. These descriptors aim to facilitate data reuse rather than testing hypotheses or presenting new interpretations, methods, or in-depth analyses.
期刊最新文献
A telomere-to-telomere genome assembly of Chinese grain sorghum 654. An ecoacoustic dataset collected on the island of Cyprus in the Mediterranean Basin biodiversity hotspot. Chromosome-level reference genome assembly for the protected resource plant, Zenia insignis. Reusability challenges of livestock production data to improve animal health. SHDB-AF: a Japanese Holter ECG database of atrial fibrillation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1