Genetic analyses and functional validation of ruminant SLAMs reveal potential hosts for PPRV.

IF 3.7 1区 农林科学 Q1 VETERINARY SCIENCES Veterinary Research Pub Date : 2025-03-18 DOI:10.1186/s13567-025-01489-w
Xi Wei, Kejia Lu, Zhengwu Chang, Hanwei Guo, Qinfeng Li, Binxuan Yuan, Chen Liu, Zengqi Yang, Haijin Liu
{"title":"Genetic analyses and functional validation of ruminant SLAMs reveal potential hosts for PPRV.","authors":"Xi Wei, Kejia Lu, Zhengwu Chang, Hanwei Guo, Qinfeng Li, Binxuan Yuan, Chen Liu, Zengqi Yang, Haijin Liu","doi":"10.1186/s13567-025-01489-w","DOIUrl":null,"url":null,"abstract":"<p><p>Peste des petits ruminants (PPR), caused by the peste des petits ruminants virus (PPRV), is a highly contagious disease affecting ruminants. While goats and sheep are well-known hosts, PPRV has also spread to wild ruminants, and it remains unclear which ruminant species can be infected. SLAM (Signaling lymphocytic activation molecule) acts as the primary receptor for PPRV, playing a crucial role in the viral infection process. Identifying which ruminant SLAMs can mediate PPRV infection is essential for understanding the potential hosts of PPRV, which is vital for effective eradication efforts. In this study, we first extracted 77 ruminant species' SLAM sequences from ruminant genome database. Based on these sequences, we predicted the structures of ruminant SLAMs. The analysis revealed that SLAM conformation is similar across ruminant species, and the potential PPRV H protein binding domain residues were conserved among SLAMs of these 77 species. Phylogenetic analysis of SLAM grouped ruminants into six families. We then selected representative SLAMs from each ruminant family to assess their role in PPRV infection. Our findings demonstrated that ruminant SLAMs efficiently mediated PPRV infection, with enhanced viral amplification observed in cells expressing SLAM from java mouse deer (Tragulidae) and goat (Bovidae), compared to cells expressing SLAM from white tailed deer (Cervidae) and giraffe (Giraffidae). These results underscore the need to consider a broader range of potential host populations beyond goat and sheep in efforts to prevent and eradicate PPRV.</p>","PeriodicalId":23658,"journal":{"name":"Veterinary Research","volume":"56 1","pages":"57"},"PeriodicalIF":3.7000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Veterinary Research","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1186/s13567-025-01489-w","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"VETERINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Peste des petits ruminants (PPR), caused by the peste des petits ruminants virus (PPRV), is a highly contagious disease affecting ruminants. While goats and sheep are well-known hosts, PPRV has also spread to wild ruminants, and it remains unclear which ruminant species can be infected. SLAM (Signaling lymphocytic activation molecule) acts as the primary receptor for PPRV, playing a crucial role in the viral infection process. Identifying which ruminant SLAMs can mediate PPRV infection is essential for understanding the potential hosts of PPRV, which is vital for effective eradication efforts. In this study, we first extracted 77 ruminant species' SLAM sequences from ruminant genome database. Based on these sequences, we predicted the structures of ruminant SLAMs. The analysis revealed that SLAM conformation is similar across ruminant species, and the potential PPRV H protein binding domain residues were conserved among SLAMs of these 77 species. Phylogenetic analysis of SLAM grouped ruminants into six families. We then selected representative SLAMs from each ruminant family to assess their role in PPRV infection. Our findings demonstrated that ruminant SLAMs efficiently mediated PPRV infection, with enhanced viral amplification observed in cells expressing SLAM from java mouse deer (Tragulidae) and goat (Bovidae), compared to cells expressing SLAM from white tailed deer (Cervidae) and giraffe (Giraffidae). These results underscore the need to consider a broader range of potential host populations beyond goat and sheep in efforts to prevent and eradicate PPRV.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
反刍动物 SLAM 的遗传分析和功能验证揭示了 PPRV 的潜在宿主。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Veterinary Research
Veterinary Research 农林科学-兽医学
CiteScore
7.00
自引率
4.50%
发文量
92
审稿时长
3 months
期刊介绍: Veterinary Research is an open access journal that publishes high quality and novel research and review articles focusing on all aspects of infectious diseases and host-pathogen interaction in animals.
期刊最新文献
Genetic analyses and functional validation of ruminant SLAMs reveal potential hosts for PPRV. GHSR gene knockout alleviates the liver pathological response in Echinococcus granulosus infection by reducing parasite survival. Emergence of a novel reassortant H3N3 avian influenza virus with enhanced pathogenicity and transmissibility in chickens in China. Transcriptomic analysis revealed ferroptosis in ducklings with splenic necrosis induced by NDRV infection. The striking incidence of animal listeriosis in Germany (2014-2024) indicates a persistent but neglected risk for One Health.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1