Hard-Aware Instance Adaptive Self-Training for Unsupervised Cross-Domain Semantic Segmentation

Chuang Zhu;Kebin Liu;Wenqi Tang;Ke Mei;Jiaqi Zou;Tiejun Huang
{"title":"Hard-Aware Instance Adaptive Self-Training for Unsupervised Cross-Domain Semantic Segmentation","authors":"Chuang Zhu;Kebin Liu;Wenqi Tang;Ke Mei;Jiaqi Zou;Tiejun Huang","doi":"10.1109/TPAMI.2025.3552484","DOIUrl":null,"url":null,"abstract":"The divergence between labeled training data and unlabeled testing data is a significant challenge for recent deep learning models. Unsupervised domain adaptation (UDA) attempts to solve such problem. Recent works show that self-training is a powerful approach to UDA. However, existing methods have difficulty in balancing the scalability and performance. In this paper, we propose a hard-aware instance adaptive self-training framework for UDA on the task of semantic segmentation. To effectively improve the quality and diversity of pseudo-labels, we develop a novel pseudo-label generation strategy with an instance adaptive selector. We further enrich the hard class pseudo-labels with inter-image information through a skillfully designed hard-aware pseudo-label augmentation. Besides, we propose the region-adaptive regularization to smooth the pseudo-label region and sharpen the non-pseudo-label region. For the non-pseudo-label region, consistency constraint is also constructed to introduce stronger supervision signals during model optimization. Our method is so concise and efficient that it is easy to be generalized to other UDA methods. Experiments on GTA5 <inline-formula><tex-math>$\\rightarrow$</tex-math></inline-formula> Cityscapes, SYNTHIA <inline-formula><tex-math>$\\rightarrow$</tex-math></inline-formula> Cityscapes, and Cityscapes <inline-formula><tex-math>$\\rightarrow$</tex-math></inline-formula> Oxford RobotCar demonstrate the superior performance of our approach compared with the state-of-the-art methods.","PeriodicalId":94034,"journal":{"name":"IEEE transactions on pattern analysis and machine intelligence","volume":"47 7","pages":"5655-5671"},"PeriodicalIF":18.6000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on pattern analysis and machine intelligence","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10930817/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The divergence between labeled training data and unlabeled testing data is a significant challenge for recent deep learning models. Unsupervised domain adaptation (UDA) attempts to solve such problem. Recent works show that self-training is a powerful approach to UDA. However, existing methods have difficulty in balancing the scalability and performance. In this paper, we propose a hard-aware instance adaptive self-training framework for UDA on the task of semantic segmentation. To effectively improve the quality and diversity of pseudo-labels, we develop a novel pseudo-label generation strategy with an instance adaptive selector. We further enrich the hard class pseudo-labels with inter-image information through a skillfully designed hard-aware pseudo-label augmentation. Besides, we propose the region-adaptive regularization to smooth the pseudo-label region and sharpen the non-pseudo-label region. For the non-pseudo-label region, consistency constraint is also constructed to introduce stronger supervision signals during model optimization. Our method is so concise and efficient that it is easy to be generalized to other UDA methods. Experiments on GTA5 $\rightarrow$ Cityscapes, SYNTHIA $\rightarrow$ Cityscapes, and Cityscapes $\rightarrow$ Oxford RobotCar demonstrate the superior performance of our approach compared with the state-of-the-art methods.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
无监督跨域语义分割的硬感知实例自适应训练。
标记训练数据和未标记测试数据之间的差异是当前深度学习模型面临的一个重大挑战。无监督域自适应(UDA)试图解决这一问题。最近的研究表明,自我训练是一种有效的UDA方法。然而,现有的方法难以平衡可伸缩性和性能。在本文中,我们提出了一种基于语义分割任务的硬感知实例自适应自训练框架。为了有效地提高伪标签的质量和多样性,我们提出了一种基于实例自适应选择器的伪标签生成策略。我们通过巧妙设计的硬感知伪标签增强,进一步用图像间信息丰富硬类伪标签。此外,我们提出了区域自适应正则化来平滑伪标签区域和锐化非伪标签区域。对于非伪标签区域,构造一致性约束,在模型优化过程中引入更强的监督信号。我们的方法简洁高效,易于推广到其他UDA方法中。在GTA5 cityscape、SYNTHIA cityscape和cityscape Oxford RobotCar上的实验表明,与最先进的方法相比,我们的方法具有优越的性能。我们的代码可在https://github.com/bupt-ai-cz/HIAST上获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Examining the Impact of Optical Aberrations to Image Classification and Object Detection Models. Neural Eigenfunctions are Structured Representation Learners. Calibrating Biased Distribution in VFM-derived Latent Space via Cross-Domain Geometric Consistency. ASIL: Augmented Structural Information Learning for Deep Graph Clustering in Hyperbolic Space. FC$^{2}$: Fast Co-Clustering With Small-Scale Similarity Graph and Bipartite Graph Learning.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1