A framework for analyzing EEG data using high-dimensional tests.

Qiuyan Zhang, Wenjing Xiang, Bo Yang, Hu Yang
{"title":"A framework for analyzing EEG data using high-dimensional tests.","authors":"Qiuyan Zhang, Wenjing Xiang, Bo Yang, Hu Yang","doi":"10.1093/bioinformatics/btaf109","DOIUrl":null,"url":null,"abstract":"<p><strong>Motivation: </strong>The objective of EEG data analysis is to extract meaningful insights, enhancing our understanding of brain function. However, the high dimensionality and temporal dependency of EEG data present significant challenges to the effective application of statistical methods. This study systematically addresses these challenges by introducing a high-dimensional statistical framework that includes testing changes in the mean vector and precision matrix, as well as conducting relevant analyses. Specifically, the Ridgelized Hotelling's T2 test (RIHT) is introduced to test changes in the mean vector of EEG data over time while relaxing traditional distributional and moment assumptions. Secondly, a multiple population de-biased estimation and testing method (MPDe) is developed to estimate and simultaneously test differences in the precision matrix before and after stimulation. This approach extends the joint Gaussian graphical model to multiple populations while incorporating the temporal dependency of EEG data. Meanwhile, a novel data-driven fine-tuning method is applied to automatically search for optimal hyperparameters.</p><p><strong>Results: </strong>Through comprehensive simulation studies and applications, we have obtained substantial evidence to validate that the RIHT has relatively high power, and it can test for changes when the distribution is unknown. Similarly, the MPDe can infer the precision matrix under time-dependent conditions. Additionally, the conducted analysis of channel selection and dominant channel can identify significant channels which play a crucial role in human cognitive ability, such as PO3, PO4, Pz, P4, P8, FT7, and FT8. All findings confirm that the proposed methods outperform existing ones, demonstrating the effectiveness of the framework in EEG data analysis.</p><p><strong>Availability and implementation: </strong>Source code and data used in the article are available at https://github.com/yahu911/Framework_EEG.</p>","PeriodicalId":93899,"journal":{"name":"Bioinformatics (Oxford, England)","volume":" ","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2025-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11978393/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioinformatics (Oxford, England)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/bioinformatics/btaf109","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Motivation: The objective of EEG data analysis is to extract meaningful insights, enhancing our understanding of brain function. However, the high dimensionality and temporal dependency of EEG data present significant challenges to the effective application of statistical methods. This study systematically addresses these challenges by introducing a high-dimensional statistical framework that includes testing changes in the mean vector and precision matrix, as well as conducting relevant analyses. Specifically, the Ridgelized Hotelling's T2 test (RIHT) is introduced to test changes in the mean vector of EEG data over time while relaxing traditional distributional and moment assumptions. Secondly, a multiple population de-biased estimation and testing method (MPDe) is developed to estimate and simultaneously test differences in the precision matrix before and after stimulation. This approach extends the joint Gaussian graphical model to multiple populations while incorporating the temporal dependency of EEG data. Meanwhile, a novel data-driven fine-tuning method is applied to automatically search for optimal hyperparameters.

Results: Through comprehensive simulation studies and applications, we have obtained substantial evidence to validate that the RIHT has relatively high power, and it can test for changes when the distribution is unknown. Similarly, the MPDe can infer the precision matrix under time-dependent conditions. Additionally, the conducted analysis of channel selection and dominant channel can identify significant channels which play a crucial role in human cognitive ability, such as PO3, PO4, Pz, P4, P8, FT7, and FT8. All findings confirm that the proposed methods outperform existing ones, demonstrating the effectiveness of the framework in EEG data analysis.

Availability and implementation: Source code and data used in the article are available at https://github.com/yahu911/Framework_EEG.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于高维测试的脑电数据分析框架。
动机:脑电图数据分析的目的是提取有意义的见解,增强我们对大脑功能的理解。然而,脑电数据的高维性和时间依赖性给统计方法的有效应用带来了很大的挑战。本研究通过引入一个高维统计框架,包括测试平均向量和精度矩阵的变化,以及进行相关分析,系统地解决了这些挑战。具体来说,引入脊化Hotelling’s T2检验(右)来检验EEG数据的平均向量随时间的变化,同时放松传统的分布和矩假设。其次,提出了一种多总体去偏估计和检验方法(MPDe),用于估计和同时检验刺激前后精度矩阵的差异;该方法将联合高斯图模型扩展到多种群,同时结合了脑电数据的时间依赖性。同时,采用一种新颖的数据驱动微调方法自动搜索最优超参数。结果:通过全面的仿真研究和应用,我们已经获得了大量的证据来验证right具有较高的功率,并且可以在分布未知的情况下测试变化。同样,MPDe可以推断出时间相关条件下的精度矩阵。此外,通过对通道选择和优势通道的分析,可以识别出在人类认知能力中起关键作用的重要通道,如PO3、PO4、Pz、P4、P8、FT7和FT8。结果表明,本文提出的方法优于现有的方法,证明了该框架在脑电数据分析中的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
TrIPP: a Trajectory Iterative pKa Predictor. UCell and pyUCell: single-cell gene signature scoring for R and python. CEMUSA: A Graph-based Integrative Metric for Evaluating Clusters in Spatial Transcriptomics. Mamba6mA: A Mamba-based DNA N6-methyladenine Site Prediction Model. transFusion: a Novel Comprehensive Platform for integration Analysis of Single-Cell and Spatial Transcriptomics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1