Reviving recovered carbon black as reinforcement for natural rubber by utilizing acylhydrazine-functionalized polysulfide as an intelligent interfacial modifier
{"title":"Reviving recovered carbon black as reinforcement for natural rubber by utilizing acylhydrazine-functionalized polysulfide as an intelligent interfacial modifier","authors":"Senmao Yu, Zhenghai Tang, Dong Wang, Siwu Wu, Fei Chen, Baochun Guo, Liqun Zhang","doi":"10.1039/d5py00111k","DOIUrl":null,"url":null,"abstract":"Recovered carbon black (rCB), a regenerative product from the thermal pyrolysis of waste tires, can be reused as a reinforcement for rubbers, with the goal of achieving high-value utilization of resources and promoting sustainable development. However, the inert surface of rCB causes poor compatibility with rubbers and results in low reinforcement efficiency. In this work, we synthesized acylhydrazine-functionalized polysulfide (SPT) and utilized it as an interfacial modifier for demineralized rCB (drCB)-filled natural rubber (NR) composites. SPT was synthesized through a one-pot sequential copolymerization of sulfur, styrene and thioctic acylhydrazine. The acylhydrazine moieties of SPT have multiple interactions with the oxygen-containing groups on drCB surface, while the polysulfide segments are able to graft onto NR chains, thereby creating molecular bridge between drCB and NR. Morphological and interfacial studies show that drCB dispersion is remarkably improved and interfacial adhesion is greatly enhanced upon the addition of SPT. As a consequence, the reinforcement efficiency of drCB is improved and the hysteresis loss of resulted composites is significantly decreased.","PeriodicalId":100,"journal":{"name":"Polymer Chemistry","volume":"56 1","pages":""},"PeriodicalIF":4.1000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymer Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d5py00111k","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Recovered carbon black (rCB), a regenerative product from the thermal pyrolysis of waste tires, can be reused as a reinforcement for rubbers, with the goal of achieving high-value utilization of resources and promoting sustainable development. However, the inert surface of rCB causes poor compatibility with rubbers and results in low reinforcement efficiency. In this work, we synthesized acylhydrazine-functionalized polysulfide (SPT) and utilized it as an interfacial modifier for demineralized rCB (drCB)-filled natural rubber (NR) composites. SPT was synthesized through a one-pot sequential copolymerization of sulfur, styrene and thioctic acylhydrazine. The acylhydrazine moieties of SPT have multiple interactions with the oxygen-containing groups on drCB surface, while the polysulfide segments are able to graft onto NR chains, thereby creating molecular bridge between drCB and NR. Morphological and interfacial studies show that drCB dispersion is remarkably improved and interfacial adhesion is greatly enhanced upon the addition of SPT. As a consequence, the reinforcement efficiency of drCB is improved and the hysteresis loss of resulted composites is significantly decreased.
期刊介绍:
Polymer Chemistry welcomes submissions in all areas of polymer science that have a strong focus on macromolecular chemistry. Manuscripts may cover a broad range of fields, yet no direct application focus is required.