Synergistically Regulating D-Band Centers of Cd0.5Zn0.5S/LaCoO3 Heterojunction by Dual Electric Fields for Enhanced Photocatalytic Hydrogen Evolution

IF 7.2 2区 材料科学 Q2 CHEMISTRY, PHYSICAL Chemistry of Materials Pub Date : 2025-03-20 DOI:10.1021/acs.chemmater.5c00452
Jieyuan Du, Fei Jin, Guoping Jiang, Zhiliang Jin
{"title":"Synergistically Regulating D-Band Centers of Cd0.5Zn0.5S/LaCoO3 Heterojunction by Dual Electric Fields for Enhanced Photocatalytic Hydrogen Evolution","authors":"Jieyuan Du, Fei Jin, Guoping Jiang, Zhiliang Jin","doi":"10.1021/acs.chemmater.5c00452","DOIUrl":null,"url":null,"abstract":"The rapid recombination of charges severely limits the activity of photocatalysis. In this article, a polarized electric field and an internal electric field are formed between catalysts by constructing an interface engineering strategy. Through the synergistic effect of double electric fields, the above problems have been effectively resolved . The granular Cd<sub>0.5</sub>Zn<sub>0.5</sub>S was attached to the LaCoO<sub>3</sub> network structure by electrostatics, and the composite catalyst Cd<sub>0.5</sub>Zn<sub>0.5</sub>S/LaCoO<sub>3</sub> (CL) was formed. In situ characterization by XPS, EPR, and KFAM confirmed the formation of an S-scheme heterojunction between the composite catalysts. At the same time, electrochemical and fluorescence characterization confirmed that the photogenerated carrier separation efficiency of the CL-25 composite catalyst was significantly improved. This is because the built-in electric field at the interface of the composite catalyst exerts the polarizing electric field between the individual catalysts to an extreme degree, greatly reducing the recombination rate of photogenerated carriers and effectively improving the hydrogen evolution efficiency of the composite photocatalyst. DFT theoretical calculations prove that the existence of a double electric field can greatly reduce the Gibbs free energy of hydrogen adsorption.","PeriodicalId":33,"journal":{"name":"Chemistry of Materials","volume":"44 1","pages":""},"PeriodicalIF":7.2000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemistry of Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acs.chemmater.5c00452","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The rapid recombination of charges severely limits the activity of photocatalysis. In this article, a polarized electric field and an internal electric field are formed between catalysts by constructing an interface engineering strategy. Through the synergistic effect of double electric fields, the above problems have been effectively resolved . The granular Cd0.5Zn0.5S was attached to the LaCoO3 network structure by electrostatics, and the composite catalyst Cd0.5Zn0.5S/LaCoO3 (CL) was formed. In situ characterization by XPS, EPR, and KFAM confirmed the formation of an S-scheme heterojunction between the composite catalysts. At the same time, electrochemical and fluorescence characterization confirmed that the photogenerated carrier separation efficiency of the CL-25 composite catalyst was significantly improved. This is because the built-in electric field at the interface of the composite catalyst exerts the polarizing electric field between the individual catalysts to an extreme degree, greatly reducing the recombination rate of photogenerated carriers and effectively improving the hydrogen evolution efficiency of the composite photocatalyst. DFT theoretical calculations prove that the existence of a double electric field can greatly reduce the Gibbs free energy of hydrogen adsorption.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Chemistry of Materials
Chemistry of Materials 工程技术-材料科学:综合
CiteScore
14.10
自引率
5.80%
发文量
929
审稿时长
1.5 months
期刊介绍: The journal Chemistry of Materials focuses on publishing original research at the intersection of materials science and chemistry. The studies published in the journal involve chemistry as a prominent component and explore topics such as the design, synthesis, characterization, processing, understanding, and application of functional or potentially functional materials. The journal covers various areas of interest, including inorganic and organic solid-state chemistry, nanomaterials, biomaterials, thin films and polymers, and composite/hybrid materials. The journal particularly seeks papers that highlight the creation or development of innovative materials with novel optical, electrical, magnetic, catalytic, or mechanical properties. It is essential that manuscripts on these topics have a primary focus on the chemistry of materials and represent a significant advancement compared to prior research. Before external reviews are sought, submitted manuscripts undergo a review process by a minimum of two editors to ensure their appropriateness for the journal and the presence of sufficient evidence of a significant advance that will be of broad interest to the materials chemistry community.
期刊最新文献
Synergistically Regulating D-Band Centers of Cd0.5Zn0.5S/LaCoO3 Heterojunction by Dual Electric Fields for Enhanced Photocatalytic Hydrogen Evolution Optimizing Ionic Conductivity of Lithium in Li7PS6 Argyrodite via Dopant Engineering Selective Electrochemical Reduction of CO2 to Ethanol on a Heteroatom-Coordinated Dual-Atom Catalyst of Fe/Cu-NC Structure–Activity Relationship Studies of Glycosaminoglycan Mimetic Macrocycles Against Herpes Silicon Caught Carbon Copying Wolff–Kishner Reduction in Two Dimensional Siloxene Nanosheets
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1