Gerard M. Coughlin, Máté Borsos, Bre’Anna H. Barcelona, Nathan Appling, Acacia M. H. Mayfield, Elisha D. Mackey, Rana A. Eser, Cameron R. Jackson, Xinhong Chen, Sripriya Ravindra Kumar, Viviana Gradinaru
{"title":"Spatial genomics of AAV vectors reveals mechanism of transcriptional crosstalk that enables targeted delivery of large genetic cargo","authors":"Gerard M. Coughlin, Máté Borsos, Bre’Anna H. Barcelona, Nathan Appling, Acacia M. H. Mayfield, Elisha D. Mackey, Rana A. Eser, Cameron R. Jackson, Xinhong Chen, Sripriya Ravindra Kumar, Viviana Gradinaru","doi":"10.1038/s41587-025-02565-4","DOIUrl":null,"url":null,"abstract":"<p>Cell-type-specific regulatory elements such as enhancers can direct expression of recombinant adeno-associated viruses (AAVs) to specific cell types, but this approach is limited by the relatively small packaging capacity of AAVs. In this study, we used spatial genomics to show that transcriptional crosstalk between individual AAV genomes provides a general method for cell-type-specific expression of large cargo by separating distally acting regulatory elements into a second AAV genome. We identified and profiled transcriptional crosstalk in AAV genomes carrying 11 different enhancers active in mouse brain. We developed spatial genomics methods to identify and localize AAV genomes and their concatemeric forms in cultured cells and in tissue, and we demonstrate here that transcriptional crosstalk is dependent upon concatemer formation. Finally, we leveraged transcriptional crosstalk to drive expression of a 3.2-kb Cas9 cargo in a cell-type-specific manner with systemically administered engineered AAVs, and we demonstrate AAV-delivered, minimally invasive, cell-type-specific gene editing in wild-type mice that recapitulates known disease phenotypes.</p>","PeriodicalId":19084,"journal":{"name":"Nature biotechnology","volume":"11 1","pages":""},"PeriodicalIF":33.1000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1038/s41587-025-02565-4","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Cell-type-specific regulatory elements such as enhancers can direct expression of recombinant adeno-associated viruses (AAVs) to specific cell types, but this approach is limited by the relatively small packaging capacity of AAVs. In this study, we used spatial genomics to show that transcriptional crosstalk between individual AAV genomes provides a general method for cell-type-specific expression of large cargo by separating distally acting regulatory elements into a second AAV genome. We identified and profiled transcriptional crosstalk in AAV genomes carrying 11 different enhancers active in mouse brain. We developed spatial genomics methods to identify and localize AAV genomes and their concatemeric forms in cultured cells and in tissue, and we demonstrate here that transcriptional crosstalk is dependent upon concatemer formation. Finally, we leveraged transcriptional crosstalk to drive expression of a 3.2-kb Cas9 cargo in a cell-type-specific manner with systemically administered engineered AAVs, and we demonstrate AAV-delivered, minimally invasive, cell-type-specific gene editing in wild-type mice that recapitulates known disease phenotypes.
期刊介绍:
Nature Biotechnology is a monthly journal that focuses on the science and business of biotechnology. It covers a wide range of topics including technology/methodology advancements in the biological, biomedical, agricultural, and environmental sciences. The journal also explores the commercial, political, ethical, legal, and societal aspects of this research.
The journal serves researchers by providing peer-reviewed research papers in the field of biotechnology. It also serves the business community by delivering news about research developments. This approach ensures that both the scientific and business communities are well-informed and able to stay up-to-date on the latest advancements and opportunities in the field.
Some key areas of interest in which the journal actively seeks research papers include molecular engineering of nucleic acids and proteins, molecular therapy, large-scale biology, computational biology, regenerative medicine, imaging technology, analytical biotechnology, applied immunology, food and agricultural biotechnology, and environmental biotechnology.
In summary, Nature Biotechnology is a comprehensive journal that covers both the scientific and business aspects of biotechnology. It strives to provide researchers with valuable research papers and news while also delivering important scientific advancements to the business community.