{"title":"Electrochemical Oxidative One-Pot Difunctionalization of Diazo Compounds with Triazoles and Nucleophiles","authors":"Yaqi Deng, Jian Xue, Bajiba Bian, Shunying Liu","doi":"10.1039/d5qo00333d","DOIUrl":null,"url":null,"abstract":"Carbene radical coupling reactions are rarely developed due to their high reactivity. Here, we present a distinct electrochemical one-pot difunctionalization of diazo compounds with triazoles and nucleophiles. This method represents an effective strategy to access to fully-substituted triazole derivatives which can’t be accessible using the known methods. This transformation exhibits synthetically useful yields and high regioselectivity, without the need for external chemical oxidants or metal catalysts. Furthermore, a variety of nucleophiles can be employed in this reaction to construct quaternary Csp3-N and Csp3-X (X = O/F) bonds. The reaction mechanism investigations show that this unprecedent pathway was promoted via a carbene radical coupling process followed by further oxidation and nucleophilic addition.","PeriodicalId":97,"journal":{"name":"Organic Chemistry Frontiers","volume":"34 1","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Organic Chemistry Frontiers","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d5qo00333d","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ORGANIC","Score":null,"Total":0}
引用次数: 0
Abstract
Carbene radical coupling reactions are rarely developed due to their high reactivity. Here, we present a distinct electrochemical one-pot difunctionalization of diazo compounds with triazoles and nucleophiles. This method represents an effective strategy to access to fully-substituted triazole derivatives which can’t be accessible using the known methods. This transformation exhibits synthetically useful yields and high regioselectivity, without the need for external chemical oxidants or metal catalysts. Furthermore, a variety of nucleophiles can be employed in this reaction to construct quaternary Csp3-N and Csp3-X (X = O/F) bonds. The reaction mechanism investigations show that this unprecedent pathway was promoted via a carbene radical coupling process followed by further oxidation and nucleophilic addition.
期刊介绍:
Organic Chemistry Frontiers is an esteemed journal that publishes high-quality research across the field of organic chemistry. It places a significant emphasis on studies that contribute substantially to the field by introducing new or significantly improved protocols and methodologies. The journal covers a wide array of topics which include, but are not limited to, organic synthesis, the development of synthetic methodologies, catalysis, natural products, functional organic materials, supramolecular and macromolecular chemistry, as well as physical and computational organic chemistry.