DVIS++: Improved Decoupled Framework for Universal Video Segmentation

Tao Zhang;Xingye Tian;Yikang Zhou;Shunping Ji;Xuebo Wang;Xin Tao;Yuan Zhang;Pengfei Wan;Zhongyuan Wang;Yu Wu
{"title":"DVIS++: Improved Decoupled Framework for Universal Video Segmentation","authors":"Tao Zhang;Xingye Tian;Yikang Zhou;Shunping Ji;Xuebo Wang;Xin Tao;Yuan Zhang;Pengfei Wan;Zhongyuan Wang;Yu Wu","doi":"10.1109/TPAMI.2025.3552694","DOIUrl":null,"url":null,"abstract":"We present the <bold>D</b>ecoupled <bold>VI</b>deo <bold>S</b>egmentation (DVIS) framework, a novel approach for the challenging task of universal video segmentation, including video instance segmentation (VIS), video semantic segmentation (VSS), and video panoptic segmentation (VPS). Unlike previous methods that model video segmentation in an end-to-end manner, our approach decouples video segmentation into three cascaded sub-tasks: segmentation, tracking, and refinement. This decoupling design allows for simpler and more effective modeling of the spatio-temporal representations of objects, especially in complex scenes and long videos. Accordingly, we introduce two novel components: the referring tracker and the temporal refiner. These components track objects frame by frame and model spatio-temporal representations based on pre-aligned features. To improve the tracking capability of DVIS, we propose a denoising training strategy and introduce contrastive learning, resulting in a more robust framework named DVIS++. The proposed decoupled framework efficiently handles universal and open-vocabulary object representations, allowing DVIS++ to conduct universal and open-vocabulary video segmentation. We conduct extensive experiments on six mainstream benchmarks, including the VIS, VSS, and VPS datasets. Using a unified architecture, DVIS++ significantly outperforms state-of-the-art specialized methods on these benchmarks in closed- and open-vocabulary settings.","PeriodicalId":94034,"journal":{"name":"IEEE transactions on pattern analysis and machine intelligence","volume":"47 7","pages":"5918-5929"},"PeriodicalIF":18.6000,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on pattern analysis and machine intelligence","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10933545/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We present the Decoupled VIdeo Segmentation (DVIS) framework, a novel approach for the challenging task of universal video segmentation, including video instance segmentation (VIS), video semantic segmentation (VSS), and video panoptic segmentation (VPS). Unlike previous methods that model video segmentation in an end-to-end manner, our approach decouples video segmentation into three cascaded sub-tasks: segmentation, tracking, and refinement. This decoupling design allows for simpler and more effective modeling of the spatio-temporal representations of objects, especially in complex scenes and long videos. Accordingly, we introduce two novel components: the referring tracker and the temporal refiner. These components track objects frame by frame and model spatio-temporal representations based on pre-aligned features. To improve the tracking capability of DVIS, we propose a denoising training strategy and introduce contrastive learning, resulting in a more robust framework named DVIS++. The proposed decoupled framework efficiently handles universal and open-vocabulary object representations, allowing DVIS++ to conduct universal and open-vocabulary video segmentation. We conduct extensive experiments on six mainstream benchmarks, including the VIS, VSS, and VPS datasets. Using a unified architecture, DVIS++ significantly outperforms state-of-the-art specialized methods on these benchmarks in closed- and open-vocabulary settings.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
改进的通用视频分割解耦框架
我们提出了解耦视频分割(DVIS)框架,这是一种针对通用视频分割的新方法,包括视频实例分割(VIS)、视频语义分割(VSS)和视频全光分割(VPS)。与之前以端到端方式建模视频分割的方法不同,我们的方法将视频分割解耦为三个级联的子任务:分割、跟踪和细化。这种解耦设计允许对对象的时空表示进行更简单和更有效的建模,特别是在复杂的场景和长视频中。因此,我们引入了两个新的组件:引用跟踪器和时间细化器。这些组件逐帧跟踪对象,并基于预对齐的特征建模时空表示。为了提高DVIS的跟踪能力,我们提出了一种去噪训练策略,并引入了对比学习,得到了一个更鲁棒的框架,命名为DVIS++。提出的解耦框架有效地处理通用和开放词汇的对象表示,允许DVIS++进行通用和开放词汇的视频分割。我们在六种主流基准上进行了广泛的实验,包括VIS, VSS和VPS数据集。使用统一的体系结构,dvis++在封闭词汇表和开放词汇表设置的这些基准测试中明显优于最先进的专门方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Examining the Impact of Optical Aberrations to Image Classification and Object Detection Models. Neural Eigenfunctions are Structured Representation Learners. Distribution-to-Points Matching for Image Text Retrieval. Penny-Wise and Pound-Foolish in AI-Generated Image Detection. Enhancing Adversarial Transferability with Cost-efficient Landscape Flattening.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1