Yameng Liu, Xue-Qin Jiang, Jisheng Dai, Han Hai and Peng Huang
{"title":"Lossy compression based on polar codes for high throughput information reconciliation in CV-QKD systems","authors":"Yameng Liu, Xue-Qin Jiang, Jisheng Dai, Han Hai and Peng Huang","doi":"10.1088/2058-9565/adbf41","DOIUrl":null,"url":null,"abstract":"Information reconciliation (IR) is a crucial component in the post-processing stage of continuous-variable quantum key distribution (CV-QKD) systems. However, the requirement to process a large amount of information in IR has become the bottleneck of realizing high-throughput CV-QKD systems, and the phenomenon of classical channel overloads appears. To solve these issues, we first propose a lossy compression scheme based on polar codes for the Gaussian sequences, and then propose an efficient IR protocol by combining such a lossy compression. By compressing the Gaussian sequences obtained by Alice and Bob, the new proposed protocol reduces the amount of information to be processed in IR, effectively breaking the bottleneck of realizing high-throughput CV-QKD systems. Additionally, it reduces the information Alice and Bob need to transmit over classical channels, easing the classical channel load. The theoretical analysis conducted on the compression ratio of the protocol and throughput offers valuable guidance for IR. Simulations confirmed that the proposed protocol can achieve higher throughput over the other polar-code-based IR protocols.","PeriodicalId":20821,"journal":{"name":"Quantum Science and Technology","volume":"118 1","pages":""},"PeriodicalIF":5.6000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum Science and Technology","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/2058-9565/adbf41","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Information reconciliation (IR) is a crucial component in the post-processing stage of continuous-variable quantum key distribution (CV-QKD) systems. However, the requirement to process a large amount of information in IR has become the bottleneck of realizing high-throughput CV-QKD systems, and the phenomenon of classical channel overloads appears. To solve these issues, we first propose a lossy compression scheme based on polar codes for the Gaussian sequences, and then propose an efficient IR protocol by combining such a lossy compression. By compressing the Gaussian sequences obtained by Alice and Bob, the new proposed protocol reduces the amount of information to be processed in IR, effectively breaking the bottleneck of realizing high-throughput CV-QKD systems. Additionally, it reduces the information Alice and Bob need to transmit over classical channels, easing the classical channel load. The theoretical analysis conducted on the compression ratio of the protocol and throughput offers valuable guidance for IR. Simulations confirmed that the proposed protocol can achieve higher throughput over the other polar-code-based IR protocols.
期刊介绍:
Driven by advances in technology and experimental capability, the last decade has seen the emergence of quantum technology: a new praxis for controlling the quantum world. It is now possible to engineer complex, multi-component systems that merge the once distinct fields of quantum optics and condensed matter physics.
Quantum Science and Technology is a new multidisciplinary, electronic-only journal, devoted to publishing research of the highest quality and impact covering theoretical and experimental advances in the fundamental science and application of all quantum-enabled technologies.