Local Purity Distillation in Quantum Systems: Exploring the Complementarity Between Purity and Entanglement

IF 5.1 2区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY Quantum Pub Date : 2025-03-20 DOI:10.22331/q-2025-03-20-1666
Ray Ganardi, Piotr Masajada, Moein Naseri, Alexander Streltsov
{"title":"Local Purity Distillation in Quantum Systems: Exploring the Complementarity Between Purity and Entanglement","authors":"Ray Ganardi, Piotr Masajada, Moein Naseri, Alexander Streltsov","doi":"10.22331/q-2025-03-20-1666","DOIUrl":null,"url":null,"abstract":"Quantum thermodynamics and quantum entanglement represent two pivotal quantum resource theories with significant relevance in quantum information science. Despite their importance, the intricate relationship between these two theories is still not fully understood. Here, we investigate the interplay between entanglement and thermodynamics, particularly in the context of local cooling processes. We introduce and develop the framework of Gibbs-preserving local operations and classical communication. Within this framework, we explore strategies enabling remote parties to effectively cool their local systems to the ground state. Our analysis is centered on scenarios where only a single copy of a quantum state is accessible, with the ideal performance defined by the highest possible fidelity to the ground state achievable under these constraints. We focus on systems with fully degenerate local Hamiltonians, where local cooling aligns with the extraction of local purity. In this context, we establish a powerful link between the efficiency of local purity extraction and the degree of entanglement present in the system, a concept we define as $\\textit{purity-entanglement complementarity}$. Moreover, we demonstrate that in many pertinent scenarios, the optimal performance can be precisely determined through semidefinite programming techniques. Our findings open doors to various practical applications, including techniques for entanglement detection and estimation. We demonstrate this by evaluating the amount of entanglement for a class of bound entangled states.","PeriodicalId":20807,"journal":{"name":"Quantum","volume":"92 1","pages":""},"PeriodicalIF":5.1000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.22331/q-2025-03-20-1666","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Quantum thermodynamics and quantum entanglement represent two pivotal quantum resource theories with significant relevance in quantum information science. Despite their importance, the intricate relationship between these two theories is still not fully understood. Here, we investigate the interplay between entanglement and thermodynamics, particularly in the context of local cooling processes. We introduce and develop the framework of Gibbs-preserving local operations and classical communication. Within this framework, we explore strategies enabling remote parties to effectively cool their local systems to the ground state. Our analysis is centered on scenarios where only a single copy of a quantum state is accessible, with the ideal performance defined by the highest possible fidelity to the ground state achievable under these constraints. We focus on systems with fully degenerate local Hamiltonians, where local cooling aligns with the extraction of local purity. In this context, we establish a powerful link between the efficiency of local purity extraction and the degree of entanglement present in the system, a concept we define as $\textit{purity-entanglement complementarity}$. Moreover, we demonstrate that in many pertinent scenarios, the optimal performance can be precisely determined through semidefinite programming techniques. Our findings open doors to various practical applications, including techniques for entanglement detection and estimation. We demonstrate this by evaluating the amount of entanglement for a class of bound entangled states.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
量子系统的局部纯度蒸馏:纯度与纠缠的互补性探索
量子热力学和量子纠缠是量子信息科学中两个重要的量子资源理论。尽管它们很重要,但这两种理论之间错综复杂的关系仍未被完全理解。在这里,我们研究了纠缠和热力学之间的相互作用,特别是在局部冷却过程的背景下。我们介绍并发展了保持吉布斯的局部操作和经典通信的框架。在此框架内,我们探讨了使远程各方能够有效地将其本地系统冷却到基态的策略。我们的分析集中在只有一个量子态副本可访问的场景上,在这些约束下,理想的性能由对基态的最高保真度来定义。我们关注具有完全简并的局部哈密顿量的系统,其中局部冷却与局部纯度的提取一致。在这种情况下,我们在局部纯度提取的效率和系统中存在的纠缠程度之间建立了强有力的联系,我们将这个概念定义为$\textit{purity-entanglement complementarity}$。此外,我们证明了在许多相关场景中,可以通过半确定编程技术精确地确定最佳性能。我们的发现为各种实际应用打开了大门,包括纠缠检测和估计技术。我们通过评估一类束缚纠缠态的纠缠量来证明这一点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Quantum
Quantum Physics and Astronomy-Physics and Astronomy (miscellaneous)
CiteScore
9.20
自引率
10.90%
发文量
241
审稿时长
16 weeks
期刊介绍: Quantum is an open-access peer-reviewed journal for quantum science and related fields. Quantum is non-profit and community-run: an effort by researchers and for researchers to make science more open and publishing more transparent and efficient.
期刊最新文献
Complexity of geometrically local stoquastic Hamiltonians On Certified Randomness from Fourier Sampling or Random Circuit Sampling Theory of quantum error mitigation for non-Clifford gates Minimising the number of edges in LC-equivalent graph states Variational quantum algorithms for permutation-based combinatorial problems: Optimal ansatz generation with applications to quadratic assignment problems and beyond
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1