An Improved Voltage Multiplier Structure and Parameter Optimization Method for High-Voltage, Low-Ripple Power Supplies

IF 4.9 2区 工程技术 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE Journal of Emerging and Selected Topics in Power Electronics Pub Date : 2025-03-19 DOI:10.1109/JESTPE.2025.3552972
Yangyang Hao;Donglai Zhang;Linlin Lyu;Qingye Yu
{"title":"An Improved Voltage Multiplier Structure and Parameter Optimization Method for High-Voltage, Low-Ripple Power Supplies","authors":"Yangyang Hao;Donglai Zhang;Linlin Lyu;Qingye Yu","doi":"10.1109/JESTPE.2025.3552972","DOIUrl":null,"url":null,"abstract":"Satellites for space gravitational wave detection missions require ultralow-noise, high-voltage power supplies. To meet this demand, this article presents an improved capacitor multiplier structure and a parameter selection procedure. The proposed structure introduces subtle modifications to the conventional capacitor multiplier circuit, achieving excellent performance in terms of ultralow-noise output voltage. First, an in-depth analysis of various voltage multiplier circuits is conducted, demonstrating that these circuits can fundamentally be transformed into one another through topological modifications. From a physical perspective, it is proven that the quadruple-voltage rectifier structure minimizes capacitor voltage stress under identical device count and voltage gain conditions. By extending this structure, a minimized high-voltage rectifier topology is derived. Using a specific converter as a case study, minor modifications are made to the minimized rectifier structure, and the time-domain expression for the capacitor voltage is derived. Furthermore, a method for optimizing the capacitor and resistor parameters in the circuit is proposed to balance power loss and output voltage ripple. The feasibility of the proposed converter is validated with a 1000 V prototype. Experimental results align with theoretical analyses, achieving an output voltage ripple of less than 0.15 at 1000 V output.","PeriodicalId":13093,"journal":{"name":"IEEE Journal of Emerging and Selected Topics in Power Electronics","volume":"13 2","pages":"2046-2056"},"PeriodicalIF":4.9000,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of Emerging and Selected Topics in Power Electronics","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10934002/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Satellites for space gravitational wave detection missions require ultralow-noise, high-voltage power supplies. To meet this demand, this article presents an improved capacitor multiplier structure and a parameter selection procedure. The proposed structure introduces subtle modifications to the conventional capacitor multiplier circuit, achieving excellent performance in terms of ultralow-noise output voltage. First, an in-depth analysis of various voltage multiplier circuits is conducted, demonstrating that these circuits can fundamentally be transformed into one another through topological modifications. From a physical perspective, it is proven that the quadruple-voltage rectifier structure minimizes capacitor voltage stress under identical device count and voltage gain conditions. By extending this structure, a minimized high-voltage rectifier topology is derived. Using a specific converter as a case study, minor modifications are made to the minimized rectifier structure, and the time-domain expression for the capacitor voltage is derived. Furthermore, a method for optimizing the capacitor and resistor parameters in the circuit is proposed to balance power loss and output voltage ripple. The feasibility of the proposed converter is validated with a 1000 V prototype. Experimental results align with theoretical analyses, achieving an output voltage ripple of less than 0.15 at 1000 V output.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种用于高压低纹波电源的改进电压倍增器结构及参数优化方法
用于空间引力波探测任务的卫星需要超低噪声、高压电源。为了满足这一要求,本文提出了一种改进的电容倍增器结构和参数选择方法。所提出的结构对传统的电容乘法器电路进行了细微的修改,在超低噪声输出电压方面取得了优异的性能。首先,对各种电压倍增电路进行了深入分析,表明这些电路可以通过拓扑修改从根本上相互转换。从物理角度证明,在相同器件计数和电压增益条件下,四电压整流器结构使电容器电压应力最小。通过扩展这种结构,推导出了一种最小的高压整流器拓扑结构。以某变换器为例,对最小化整流器结构进行了微小修改,并推导出电容电压的时域表达式。此外,还提出了一种优化电路中电容和电阻参数的方法,以平衡功率损耗和输出电压纹波。通过1000 V样机验证了该变换器的可行性。实验结果与理论分析一致,在1000 V输出时实现了小于0.15的输出电压纹波。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
12.50
自引率
9.10%
发文量
547
审稿时长
3 months
期刊介绍: The aim of the journal is to enable the power electronics community to address the emerging and selected topics in power electronics in an agile fashion. It is a forum where multidisciplinary and discriminating technologies and applications are discussed by and for both practitioners and researchers on timely topics in power electronics from components to systems.
期刊最新文献
Investigation of Degradation Mechanism in 1200-V SiC MOSFETs Under Surge Current Stress of Body Diode Using Electro-Thermal-Mechanical Analysis A Single-Phase Nine-Level Bridge Inverter Employing Level-Shifted Carrier PWM for Low-Voltage Applications A Switching Event-Triggered Communication Method for DC-DC Converters Super-Twisting Sliding Mode Control for ANPC-Driven Permanent Magnet Synchronous Motor with Midpoint Voltage Balancing Strategy SiC MOSFET Power Module with a Compact Spatially Symmetric Double-Sided Embedded Packaging Method for High-Temperature Applications up to 500°C
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1