Comprehensive mutant chemotyping reveals embedding of a lineage-specific biosynthetic gene cluster in wider plant metabolism

IF 9.1 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES Proceedings of the National Academy of Sciences of the United States of America Pub Date : 2025-03-19 DOI:10.1073/pnas.2417588122
Xue Qiao, Alan Houghton, James Reed, Burkhard Steuernagel, Jiahe Zhang, Charlotte Owen, Aymeric Leveau, Anastasia Orme, Thomas Louveau, Rachel Melton, Brande B. H. Wulff, Anne Osbourn
{"title":"Comprehensive mutant chemotyping reveals embedding of a lineage-specific biosynthetic gene cluster in wider plant metabolism","authors":"Xue Qiao, Alan Houghton, James Reed, Burkhard Steuernagel, Jiahe Zhang, Charlotte Owen, Aymeric Leveau, Anastasia Orme, Thomas Louveau, Rachel Melton, Brande B. H. Wulff, Anne Osbourn","doi":"10.1073/pnas.2417588122","DOIUrl":null,"url":null,"abstract":"Plants produce diverse specialized metabolites with important ecological functions. It has recently become apparent that the genes for many of these pathways are not dispersed in plant genomes, but rather are arranged like beads on a string in biosynthetic gene clusters (BGCs). Pathways encoded by BGCs are as a rule dedicated linear pathways that do not form parts of wider metabolic networks. In contrast, the genes for the biosynthesis of widely distributed more ancestral metabolites such as carotenoids and anthocyanins are not clustered. Little is known about how these more recently evolved clustered pathways interact with general plant metabolism. We recently characterized a 12-gene BGC for the biosynthesis of the antimicrobial defense compound avenacin A-1, a triterpene glycoside produced by oats. Avenacin A-1 is acylated with the fluorophore <jats:italic>N</jats:italic> -methyl anthranilate and confers bright blue fluorescence of oat root tips under ultraviolet light. Here, we exploit a suite of &gt;100 avenacin-deficient mutants identified by screening for reduced root fluorescence to identify genes required for the function of this paradigm BGC. Using a combination of mutant chemotyping, biochemical and molecular analysis, and genome resequencing, we identify two nonclustered genes ( <jats:italic>Sad4</jats:italic> and <jats:italic>Pal2</jats:italic> ) encoding enzymes that synthesize the donors required for avenacin glycosylation and acylation (recruited from the phenylpropanoid and tryptophan pathways). Our finding of these Cluster Auxiliary Enzymes (CAEs) provides insights into the interplay between general plant metabolism and a newly evolved lineage-specific BGC.","PeriodicalId":20548,"journal":{"name":"Proceedings of the National Academy of Sciences of the United States of America","volume":"1 1","pages":""},"PeriodicalIF":9.1000,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the National Academy of Sciences of the United States of America","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1073/pnas.2417588122","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Plants produce diverse specialized metabolites with important ecological functions. It has recently become apparent that the genes for many of these pathways are not dispersed in plant genomes, but rather are arranged like beads on a string in biosynthetic gene clusters (BGCs). Pathways encoded by BGCs are as a rule dedicated linear pathways that do not form parts of wider metabolic networks. In contrast, the genes for the biosynthesis of widely distributed more ancestral metabolites such as carotenoids and anthocyanins are not clustered. Little is known about how these more recently evolved clustered pathways interact with general plant metabolism. We recently characterized a 12-gene BGC for the biosynthesis of the antimicrobial defense compound avenacin A-1, a triterpene glycoside produced by oats. Avenacin A-1 is acylated with the fluorophore N -methyl anthranilate and confers bright blue fluorescence of oat root tips under ultraviolet light. Here, we exploit a suite of >100 avenacin-deficient mutants identified by screening for reduced root fluorescence to identify genes required for the function of this paradigm BGC. Using a combination of mutant chemotyping, biochemical and molecular analysis, and genome resequencing, we identify two nonclustered genes ( Sad4 and Pal2 ) encoding enzymes that synthesize the donors required for avenacin glycosylation and acylation (recruited from the phenylpropanoid and tryptophan pathways). Our finding of these Cluster Auxiliary Enzymes (CAEs) provides insights into the interplay between general plant metabolism and a newly evolved lineage-specific BGC.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
综合突变体化学分型揭示了一个谱系特异性生物合成基因簇在更广泛的植物代谢中的嵌入
植物产生多种具有重要生态功能的特化代谢物。最近发现,许多这些途径的基因并没有分散在植物基因组中,而是像珠子一样排列在生物合成基因簇(BGCs)的弦上。bgc编码的途径通常是专用的线性途径,不构成更广泛的代谢网络的一部分。相反,用于广泛分布的更古老的代谢物(如类胡萝卜素和花青素)的生物合成的基因没有聚集。关于这些最近进化的集群通路如何与一般植物代谢相互作用,我们知之甚少。我们最近鉴定了一个含有12个基因的抗微生物防御化合物阿文那辛a -1的生物合成BGC,这是一种由燕麦产生的三萜苷。阿维纳酸A-1与荧光基团N -甲基苯甲酸酯酰化,在紫外光下使燕麦根尖发出明亮的蓝色荧光。在这里,我们利用一套>;100 avenacin缺陷突变体,通过筛选减少根荧光来鉴定这种范式BGC功能所需的基因。通过结合突变体化学分型、生化和分子分析以及基因组重测序,我们确定了两个非聚类基因(Sad4和Pal2)编码的酶,这些酶合成了阿维纳星糖基化和酰化所需的供体(来自苯丙氨酸和色氨酸途径)。我们发现这些簇辅助酶(CAEs)提供了一般植物代谢和新进化的谱系特异性BGC之间相互作用的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
19.00
自引率
0.90%
发文量
3575
审稿时长
2.5 months
期刊介绍: The Proceedings of the National Academy of Sciences (PNAS), a peer-reviewed journal of the National Academy of Sciences (NAS), serves as an authoritative source for high-impact, original research across the biological, physical, and social sciences. With a global scope, the journal welcomes submissions from researchers worldwide, making it an inclusive platform for advancing scientific knowledge.
期刊最新文献
A lectin receptor-like kinase controls self-pollen recognition in Phlox. Everyone wants something better than ΛCDM. Chen Ning "Frank" Yang (1922-2025): Profound proponent of symmetry. Next-gen geothermal could bring clean power to much more of the planet. Sound reasons for tympanic hearing in mammalian precursors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1