Dnmt3a-mediated hypermethylation of FoxO3 promotes redox imbalance during osteoclastogenesis

IF 9.1 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES Proceedings of the National Academy of Sciences of the United States of America Pub Date : 2025-03-19 DOI:10.1073/pnas.2418023122
Wei Zhang, Wenming Li, Jun Du, Chen Yang, Lei Yu, Peng Yang, Haifeng Zhang, Zebin Wu, Gaoran Ge, Huilin Yang, Dechun Geng
{"title":"Dnmt3a-mediated hypermethylation of FoxO3 promotes redox imbalance during osteoclastogenesis","authors":"Wei Zhang, Wenming Li, Jun Du, Chen Yang, Lei Yu, Peng Yang, Haifeng Zhang, Zebin Wu, Gaoran Ge, Huilin Yang, Dechun Geng","doi":"10.1073/pnas.2418023122","DOIUrl":null,"url":null,"abstract":"Redox imbalance contributes to aberrant osteoclastogenesis and osteoporotic bone loss. In this study, we observed lower Forkhead box protein O3 (FoxO3), a transcription factor associated with cellular oxidative stress, enhanced osteoclastogenesis in osteoporosis (OP). Single-cell RNA sequencing (scRNA-seq) analysis on the human femoral head indicated that FoxO3 is widely expressed in macrophages. Furthermore, Lysm-Cre;FoxO3 <jats:sup>f/f</jats:sup> OVX mice showed increased reactive oxygen species (ROS), enhanced osteoclastogenesis, and more bone loss than normal OVX mice. Mechanistically, we identified FoxO3 promoter methylation as a crucial factor contributing to decreased FoxO3, thereby influencing osteoclastogenesis and OC function. Intriguingly, we observed that Dnmt3a, highly expressed during osteoclastogenesis, played a pivotal role in regulating the methylation of the FoxO3 promoter. Knockdown of Dnmt3a promoted FoxO3 expression, inhibiting osteoclastogenesis and mitigating OP. Interestingly, we observed that Dnmt3a alleviated osteoclastogenesis by suppressing ROS via upregulating FoxO3 rather than inducing the dissociation of RANK and TRAF6. Collectively, this study elucidates the role and mechanism of FoxO3 in osteoclastogenesis and OP, providing a epigenetic target for the treatment of OP.","PeriodicalId":20548,"journal":{"name":"Proceedings of the National Academy of Sciences of the United States of America","volume":"15 1","pages":""},"PeriodicalIF":9.1000,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the National Academy of Sciences of the United States of America","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1073/pnas.2418023122","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Redox imbalance contributes to aberrant osteoclastogenesis and osteoporotic bone loss. In this study, we observed lower Forkhead box protein O3 (FoxO3), a transcription factor associated with cellular oxidative stress, enhanced osteoclastogenesis in osteoporosis (OP). Single-cell RNA sequencing (scRNA-seq) analysis on the human femoral head indicated that FoxO3 is widely expressed in macrophages. Furthermore, Lysm-Cre;FoxO3 f/f OVX mice showed increased reactive oxygen species (ROS), enhanced osteoclastogenesis, and more bone loss than normal OVX mice. Mechanistically, we identified FoxO3 promoter methylation as a crucial factor contributing to decreased FoxO3, thereby influencing osteoclastogenesis and OC function. Intriguingly, we observed that Dnmt3a, highly expressed during osteoclastogenesis, played a pivotal role in regulating the methylation of the FoxO3 promoter. Knockdown of Dnmt3a promoted FoxO3 expression, inhibiting osteoclastogenesis and mitigating OP. Interestingly, we observed that Dnmt3a alleviated osteoclastogenesis by suppressing ROS via upregulating FoxO3 rather than inducing the dissociation of RANK and TRAF6. Collectively, this study elucidates the role and mechanism of FoxO3 in osteoclastogenesis and OP, providing a epigenetic target for the treatment of OP.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
dnmt3a介导的FoxO3高甲基化促进破骨细胞发生过程中的氧化还原失衡
氧化还原失衡导致异常破骨细胞生成和骨质疏松性骨质流失。在这项研究中,我们观察到叉头盒蛋白O3 (FoxO3)的降低,一种与细胞氧化应激相关的转录因子,促进骨质疏松症(OP)的破骨细胞生成。人股骨头单细胞RNA测序(scRNA-seq)分析表明,FoxO3在巨噬细胞中广泛表达。此外,与正常OVX小鼠相比,Lysm-Cre;FoxO3 f/f OVX小鼠表现出活性氧(ROS)增加,破骨细胞生成增强,骨质流失更多。在机制上,我们发现FoxO3启动子甲基化是导致FoxO3减少的关键因素,从而影响破骨细胞发生和OC功能。有趣的是,我们观察到在破骨细胞发生过程中高度表达的Dnmt3a在调节FoxO3启动子的甲基化中发挥了关键作用。Dnmt3a的下调促进了FoxO3的表达,抑制了破骨细胞的形成,减轻了op。有趣的是,我们发现Dnmt3a通过上调FoxO3而不是诱导RANK和TRAF6的分离来抑制ROS,从而减轻了破骨细胞的形成。综上所述,本研究阐明了FoxO3在破骨细胞发生和OP中的作用和机制,为OP的治疗提供了一个表观遗传学靶点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
19.00
自引率
0.90%
发文量
3575
审稿时长
2.5 months
期刊介绍: The Proceedings of the National Academy of Sciences (PNAS), a peer-reviewed journal of the National Academy of Sciences (NAS), serves as an authoritative source for high-impact, original research across the biological, physical, and social sciences. With a global scope, the journal welcomes submissions from researchers worldwide, making it an inclusive platform for advancing scientific knowledge.
期刊最新文献
Four-hour thunderstorm nowcasting using a deep diffusion model for satellite data. Hypermutable hotspot enables the rapid evolution of self/non-self recognition genes in Dictyostelium. Asymmetrical recognition and processing of double-strand breaks formed during DNA replication. Occludin acts as a dynein adaptor regulating permeability and collateral angiogenesis. Potential yield and food provisioning gains from rebuilding the world's coral reef fish stocks.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1