{"title":"Androgen receptors in corticotropin-releasing hormone neurons mediate the sexual dimorphism in restraint-induced thymic atrophy","authors":"Yutong Meng, Yaning Li, Huating Gu, Ziyao Chen, Xiaoyang Cui, Xiaodong Wang","doi":"10.1073/pnas.2426107122","DOIUrl":null,"url":null,"abstract":"Sexual dimorphism in immune responses is well documented, but the underlying mechanisms remain incompletely understood. Here, we identified a subset of corticotropin-releasing hormone (CRH) neurons that express androgen receptors (ARs) as key mediators of sex differences in restraint-induced immunosuppression. Mechanistically, androgens directly activate AR-positive CRH neurons, enhancing the hypothalamic–pituitary–adrenal axis activation. This results in elevated corticosterone levels in response to restraint stress, leading to increased immune cell apoptosis and immune organ atrophy in male mice. Conditional knockout of ARs in CRH neurons eliminated this sexual dimorphism, highlighting ARs in CRH neurons as pivotal regulators of sex-specific immune responses to stress.","PeriodicalId":20548,"journal":{"name":"Proceedings of the National Academy of Sciences of the United States of America","volume":"40 1","pages":""},"PeriodicalIF":9.4000,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the National Academy of Sciences of the United States of America","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1073/pnas.2426107122","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Sexual dimorphism in immune responses is well documented, but the underlying mechanisms remain incompletely understood. Here, we identified a subset of corticotropin-releasing hormone (CRH) neurons that express androgen receptors (ARs) as key mediators of sex differences in restraint-induced immunosuppression. Mechanistically, androgens directly activate AR-positive CRH neurons, enhancing the hypothalamic–pituitary–adrenal axis activation. This results in elevated corticosterone levels in response to restraint stress, leading to increased immune cell apoptosis and immune organ atrophy in male mice. Conditional knockout of ARs in CRH neurons eliminated this sexual dimorphism, highlighting ARs in CRH neurons as pivotal regulators of sex-specific immune responses to stress.
期刊介绍:
The Proceedings of the National Academy of Sciences (PNAS), a peer-reviewed journal of the National Academy of Sciences (NAS), serves as an authoritative source for high-impact, original research across the biological, physical, and social sciences. With a global scope, the journal welcomes submissions from researchers worldwide, making it an inclusive platform for advancing scientific knowledge.