Multiscale Deep Learning Reparameterized Full Waveform Inversion With the Adjoint Method

IF 8.6 1区 地球科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE Transactions on Geoscience and Remote Sensing Pub Date : 2025-03-19 DOI:10.1109/TGRS.2025.3553053
Peng Zhao;Jinwei Fang;Chen Jie;Jun Zhang;Enyuan Wang;Shaohua Zhang
{"title":"Multiscale Deep Learning Reparameterized Full Waveform Inversion With the Adjoint Method","authors":"Peng Zhao;Jinwei Fang;Chen Jie;Jun Zhang;Enyuan Wang;Shaohua Zhang","doi":"10.1109/TGRS.2025.3553053","DOIUrl":null,"url":null,"abstract":"The application of deep learning techniques to full waveform inversion (FWI) theory represents a significant research direction. Leveraging the nonlinear representations offered by deep learning and conducting practical FWI are paramount. This article utilizes the classic adjoint method in FWI to compute the gradients of model parameters, employing deep learning to represent model parameters and optimize network training. The focus is on achieving high-precision FWI through multiscale deep learning optimization. Specifically, deep neural networks are used to represent model parameter information and compute gradients of model parameters on high-performance platforms. The gradients of the network parameters are automatically obtained through backpropagation, with deep learning optimization tools updating the network parameters and, consequently, the model parameters. To enhance inversion accuracy, a multiscale learning strategy is introduced, where deep networks optimize the learning of model parameter information at each scale, ensuring effective representation of inversion parameter information across multiple scales. Experimental results demonstrate that deep learning reparameterization methods possess broad-spectrum modeling capabilities. The multiscale deep learning strategy significantly improves inversion accuracy, and the reparameterization method of deep learning shows potential for high-precision modeling under conditions of sparse and noisy observational data. Furthermore, the application of field data underscores the reliability of the proposed method.","PeriodicalId":13213,"journal":{"name":"IEEE Transactions on Geoscience and Remote Sensing","volume":"63 ","pages":"1-12"},"PeriodicalIF":8.6000,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Geoscience and Remote Sensing","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10933991/","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

The application of deep learning techniques to full waveform inversion (FWI) theory represents a significant research direction. Leveraging the nonlinear representations offered by deep learning and conducting practical FWI are paramount. This article utilizes the classic adjoint method in FWI to compute the gradients of model parameters, employing deep learning to represent model parameters and optimize network training. The focus is on achieving high-precision FWI through multiscale deep learning optimization. Specifically, deep neural networks are used to represent model parameter information and compute gradients of model parameters on high-performance platforms. The gradients of the network parameters are automatically obtained through backpropagation, with deep learning optimization tools updating the network parameters and, consequently, the model parameters. To enhance inversion accuracy, a multiscale learning strategy is introduced, where deep networks optimize the learning of model parameter information at each scale, ensuring effective representation of inversion parameter information across multiple scales. Experimental results demonstrate that deep learning reparameterization methods possess broad-spectrum modeling capabilities. The multiscale deep learning strategy significantly improves inversion accuracy, and the reparameterization method of deep learning shows potential for high-precision modeling under conditions of sparse and noisy observational data. Furthermore, the application of field data underscores the reliability of the proposed method.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于伴随法的多尺度深度学习全波形重参数化反演
将深度学习技术应用于全波形反演(FWI)理论是一个重要的研究方向。利用深度学习提供的非线性表示并进行实际的FWI是至关重要的。本文利用FWI中经典的伴随方法来计算模型参数的梯度,利用深度学习来表示模型参数,优化网络训练。重点是通过多尺度深度学习优化实现高精度FWI。具体而言,在高性能平台上使用深度神经网络表示模型参数信息并计算模型参数的梯度。通过反向传播自动获得网络参数的梯度,通过深度学习优化工具更新网络参数,从而更新模型参数。为了提高反演精度,引入了一种多尺度学习策略,其中深度网络在每个尺度上优化模型参数信息的学习,确保反演参数信息在多个尺度上的有效表示。实验结果表明,深度学习再参数化方法具有广谱建模能力。多尺度深度学习策略显著提高了反演精度,深度学习的重参数化方法显示了在观测数据稀疏和噪声条件下高精度建模的潜力。此外,现场数据的应用证明了该方法的可靠性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Transactions on Geoscience and Remote Sensing
IEEE Transactions on Geoscience and Remote Sensing 工程技术-地球化学与地球物理
CiteScore
11.50
自引率
28.00%
发文量
1912
审稿时长
4.0 months
期刊介绍: IEEE Transactions on Geoscience and Remote Sensing (TGRS) is a monthly publication that focuses on the theory, concepts, and techniques of science and engineering as applied to sensing the land, oceans, atmosphere, and space; and the processing, interpretation, and dissemination of this information.
期刊最新文献
Corrections to “Beyond L2: Leveraging Sinkhorn Distance for Improved Resistivity Recovery in 3-D Magnetotelluric Inversion” HAM-CD: Hybrid Attention Mamba for Remote Sensing Change Detection Land Surface Temperature End-to-end Retrieval from Fengyun-4B AGRI Thermal Infrared Remote Sensing Data Considering the Emissivity Angular Effect PointCleaner: Dynamic Manifold Path Optimization for LiDAR Point Cloud Denoising See Hidden Insight From Transposition: Multi-Axis Feature Aggregation for Aerial Object Detection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1