Physics-Informed Gradient Estimation for Accelerating Deep Learning-Based AC-OPF

IF 9.9 1区 计算机科学 Q1 AUTOMATION & CONTROL SYSTEMS IEEE Transactions on Industrial Informatics Pub Date : 2025-03-19 DOI:10.1109/TII.2025.3545080
Kejun Chen;Shourya Bose;Yu Zhang
{"title":"Physics-Informed Gradient Estimation for Accelerating Deep Learning-Based AC-OPF","authors":"Kejun Chen;Shourya Bose;Yu Zhang","doi":"10.1109/TII.2025.3545080","DOIUrl":null,"url":null,"abstract":"The optimal power flow (OPF) problem can be rapidly and reliably solved by employing responsive online solvers based on neural networks. The dynamic nature of renewable energy generation and the variability of power grid conditions necessitate frequent neural network updates with new data instances. To address this need and reduce the time required for data preparation time, we propose a semisupervised learning framework aided by data augmentation. In this context, ridge regression replaces the traditional solver, facilitating swift prediction of optimal solutions for the given input load demands. In addition, to accelerate the backpropagation during training, we develop novel batch-mean gradient estimation approaches along with a reduced branch set to alleviate the complexity of gradient computation. Numerical simulations demonstrate that our neural network, equipped with the proposed gradient estimators, consistently achieves feasible and near-optimal solutions. These results underline the effectiveness of our approach for practical implementation in real-time OPF applications.","PeriodicalId":13301,"journal":{"name":"IEEE Transactions on Industrial Informatics","volume":"21 6","pages":"4649-4660"},"PeriodicalIF":9.9000,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Industrial Informatics","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10933585/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

The optimal power flow (OPF) problem can be rapidly and reliably solved by employing responsive online solvers based on neural networks. The dynamic nature of renewable energy generation and the variability of power grid conditions necessitate frequent neural network updates with new data instances. To address this need and reduce the time required for data preparation time, we propose a semisupervised learning framework aided by data augmentation. In this context, ridge regression replaces the traditional solver, facilitating swift prediction of optimal solutions for the given input load demands. In addition, to accelerate the backpropagation during training, we develop novel batch-mean gradient estimation approaches along with a reduced branch set to alleviate the complexity of gradient computation. Numerical simulations demonstrate that our neural network, equipped with the proposed gradient estimators, consistently achieves feasible and near-optimal solutions. These results underline the effectiveness of our approach for practical implementation in real-time OPF applications.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
加速基于深度学习的AC-OPF的物理信息梯度估计
采用基于神经网络的响应式在线求解器可以快速、可靠地求解最优潮流问题。可再生能源发电的动态性和电网条件的可变性要求神经网络频繁更新新的数据实例。为了满足这一需求并减少数据准备时间所需的时间,我们提出了一种由数据增强辅助的半监督学习框架。在这种情况下,岭回归取代了传统的求解器,便于快速预测给定输入负载需求的最优解。此外,为了加速训练过程中的反向传播,我们开发了新的批平均梯度估计方法和简化分支集,以减轻梯度计算的复杂性。数值模拟表明,我们的神经网络配备了所提出的梯度估计器,一致地获得可行和近最优解。这些结果强调了我们的方法在实时OPF应用中实际实施的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Transactions on Industrial Informatics
IEEE Transactions on Industrial Informatics 工程技术-工程:工业
CiteScore
24.10
自引率
8.90%
发文量
1202
审稿时长
5.1 months
期刊介绍: The IEEE Transactions on Industrial Informatics is a multidisciplinary journal dedicated to publishing technical papers that connect theory with practical applications of informatics in industrial settings. It focuses on the utilization of information in intelligent, distributed, and agile industrial automation and control systems. The scope includes topics such as knowledge-based and AI-enhanced automation, intelligent computer control systems, flexible and collaborative manufacturing, industrial informatics in software-defined vehicles and robotics, computer vision, industrial cyber-physical and industrial IoT systems, real-time and networked embedded systems, security in industrial processes, industrial communications, systems interoperability, and human-machine interaction.
期刊最新文献
Robust and Secure Multiparty Collaborative QoS Prediction Scheme for IIoT Services A Novel Fusion Attention-Based Lightweight Model for Pipeline Weld Multiscale Defect Detection ARViP: Adversarial Regularization in Visuomotor Policies for Robotic VLA Purpose A Resource-Efficient Blockchain With Delegated Fault-Tolerance for Manufacturing Nodes Pricing Uncertainties With General Parametric Distributions in Power Systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1