Control Optimization for Space Robots in Target Detumbling

IF 5.7 2区 计算机科学 Q1 ENGINEERING, AEROSPACE IEEE Transactions on Aerospace and Electronic Systems Pub Date : 2025-03-19 DOI:10.1109/TAES.2025.3552732
Xiaoyi Wang;Jayantha Katupitiya
{"title":"Control Optimization for Space Robots in Target Detumbling","authors":"Xiaoyi Wang;Jayantha Katupitiya","doi":"10.1109/TAES.2025.3552732","DOIUrl":null,"url":null,"abstract":"Space robots have significantly advanced space technology by performing various in-orbit missions, including spacecraft maintenance, large-scale spacecraft assembly, and the capture and removal of noncooperative space objects. Safely and autonomously capturing a tumbling defunct satellite, a typical noncooperative object, poses a significant challenge for free-floating space robots (FFSR). After the end-effector of an FFSR securely reaches the tumbling target, the FFSR can decelerate its rotation and stabilize it to a stationary state, completing the capture mission. Given the limitations in control energy and the urgency of rapid stabilization for safety, the investigation of optimal control methods for space robots grasping noncooperative tumbling targets is a significant area of research. This article offers an optimal control solution for FFSRs to engage and bring a rotating object in space to rest. Initially, we develop a nonlinear optimal control method for FFSRs using the Hamilton–Jacobi–Bellman (HJB) equation for optimization in multiple performance indices, ensuring detailed proof of stability and convergence. The successive Galerkin approximation (SGA) method is specifically developed to approximate the analytical solution for the HJB equation for FFSRs. Computational simulations support the viability of the proposed method to arrest a tumbling target. Compared to the customary computed torque control before the optimization, computational simulation results show the proposed SGA optimal control approach achieves quicker stabilization of the tumbling target with reduced control energy consumption.","PeriodicalId":13157,"journal":{"name":"IEEE Transactions on Aerospace and Electronic Systems","volume":"61 4","pages":"9171-9183"},"PeriodicalIF":5.7000,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Aerospace and Electronic Systems","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10933566/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
引用次数: 0

Abstract

Space robots have significantly advanced space technology by performing various in-orbit missions, including spacecraft maintenance, large-scale spacecraft assembly, and the capture and removal of noncooperative space objects. Safely and autonomously capturing a tumbling defunct satellite, a typical noncooperative object, poses a significant challenge for free-floating space robots (FFSR). After the end-effector of an FFSR securely reaches the tumbling target, the FFSR can decelerate its rotation and stabilize it to a stationary state, completing the capture mission. Given the limitations in control energy and the urgency of rapid stabilization for safety, the investigation of optimal control methods for space robots grasping noncooperative tumbling targets is a significant area of research. This article offers an optimal control solution for FFSRs to engage and bring a rotating object in space to rest. Initially, we develop a nonlinear optimal control method for FFSRs using the Hamilton–Jacobi–Bellman (HJB) equation for optimization in multiple performance indices, ensuring detailed proof of stability and convergence. The successive Galerkin approximation (SGA) method is specifically developed to approximate the analytical solution for the HJB equation for FFSRs. Computational simulations support the viability of the proposed method to arrest a tumbling target. Compared to the customary computed torque control before the optimization, computational simulation results show the proposed SGA optimal control approach achieves quicker stabilization of the tumbling target with reduced control energy consumption.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
空间机器人目标坠落控制优化
空间机器人通过执行各种在轨任务,包括航天器维护,大型航天器组装以及捕获和移除非合作空间物体,显着提高了空间技术。安全自主捕获翻滚的报废卫星是一种典型的非合作物体,对自由漂浮空间机器人(FFSR)提出了重大挑战。当FFSR末端执行器安全到达翻滚目标后,FFSR可以减速旋转并稳定到静止状态,完成捕获任务。考虑到空间机器人控制能量的有限性和快速稳定对安全的迫切性,研究空间机器人抓取非合作翻滚目标的最优控制方法是一个重要的研究领域。本文提供了一种最优控制方案,用于ffsr与空间中的旋转物体接合并使其静止。首先,我们利用Hamilton-Jacobi-Bellman (HJB)方程开发了FFSRs的非线性最优控制方法,用于多个性能指标的优化,确保了稳定性和收敛性的详细证明。针对ffsr的HJB方程的解析解,提出了逐次伽辽金近似(SGA)方法。计算仿真验证了该方法的可行性。与优化前常用的计算转矩控制方法相比,计算仿真结果表明,所提出的SGA最优控制方法在降低控制能耗的同时实现了翻滚目标更快的稳定。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
7.80
自引率
13.60%
发文量
433
审稿时长
8.7 months
期刊介绍: IEEE Transactions on Aerospace and Electronic Systems focuses on the organization, design, development, integration, and operation of complex systems for space, air, ocean, or ground environment. These systems include, but are not limited to, navigation, avionics, spacecraft, aerospace power, radar, sonar, telemetry, defense, transportation, automated testing, and command and control.
期刊最新文献
Efficient and Robust Area Capture for Multi-Spacecraft Orbital Games Using Hopf Formula Long-Horizon Stable UAV Dynamics Forecasting with Neural Lyapunov Functions and Spatial-Temporal Linear Transformer Cooperative Decision-Making of UAVs Within-Visual-Range Integrating a Two-Step Matrix Game and an Improved Genetic Algorithm Adaptive Augmentation of Incremental Nonlinear Dynamic Inversion for Micro Quadrotor Aerobatic Flight Control Higher-Order Tensor-Based Deferral of Gaussian Splitting for Orbit Uncertainty Propagation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1