{"title":"Transition Metal Dichalcogenides in Biomedical Devices and Biosensors: A New Frontier for Precision Healthcare.","authors":"Eslam M Hamed, Sam F Y Li","doi":"10.1021/acsbiomaterials.4c02465","DOIUrl":null,"url":null,"abstract":"<p><p>Transition metal dichalcogenides (TMDs) have emerged as groundbreaking materials in the field of biomedical applications, particularly in the development of biosensors and medical devices. Their unique electronic and optical properties, combined with their tunability and biocompatibility, position TMDs as promising candidates for enhancing early disease detection and enabling personalized medicine. This perspective explores the multifaceted potential of TMDs, highlighting their applications in fluorescence and Raman-based biosensing, wearable and implantable devices, and smart therapeutic systems for targeted treatment. Additionally, we address critical challenges such as regulatory hurdles, long-term stability, and ethical considerations surrounding continuous health monitoring and data privacy. Looking to the future, we envision TMDs playing a vital role in the advancement of precision medicine, facilitating real-time health monitoring and individualized treatments. However, the successful integration of TMDs into clinical practice necessitates interdisciplinary collaboration among materials science, bioengineering, and clinical medicine. By fostering such collaboration, we can fully harness the capabilities of TMDs to revolutionize healthcare, making it more accessible, precise, and personalized for patients worldwide.</p>","PeriodicalId":8,"journal":{"name":"ACS Biomaterials Science & Engineering","volume":" ","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Biomaterials Science & Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1021/acsbiomaterials.4c02465","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
Transition metal dichalcogenides (TMDs) have emerged as groundbreaking materials in the field of biomedical applications, particularly in the development of biosensors and medical devices. Their unique electronic and optical properties, combined with their tunability and biocompatibility, position TMDs as promising candidates for enhancing early disease detection and enabling personalized medicine. This perspective explores the multifaceted potential of TMDs, highlighting their applications in fluorescence and Raman-based biosensing, wearable and implantable devices, and smart therapeutic systems for targeted treatment. Additionally, we address critical challenges such as regulatory hurdles, long-term stability, and ethical considerations surrounding continuous health monitoring and data privacy. Looking to the future, we envision TMDs playing a vital role in the advancement of precision medicine, facilitating real-time health monitoring and individualized treatments. However, the successful integration of TMDs into clinical practice necessitates interdisciplinary collaboration among materials science, bioengineering, and clinical medicine. By fostering such collaboration, we can fully harness the capabilities of TMDs to revolutionize healthcare, making it more accessible, precise, and personalized for patients worldwide.
期刊介绍:
ACS Biomaterials Science & Engineering is the leading journal in the field of biomaterials, serving as an international forum for publishing cutting-edge research and innovative ideas on a broad range of topics:
Applications and Health – implantable tissues and devices, prosthesis, health risks, toxicology
Bio-interactions and Bio-compatibility – material-biology interactions, chemical/morphological/structural communication, mechanobiology, signaling and biological responses, immuno-engineering, calcification, coatings, corrosion and degradation of biomaterials and devices, biophysical regulation of cell functions
Characterization, Synthesis, and Modification – new biomaterials, bioinspired and biomimetic approaches to biomaterials, exploiting structural hierarchy and architectural control, combinatorial strategies for biomaterials discovery, genetic biomaterials design, synthetic biology, new composite systems, bionics, polymer synthesis
Controlled Release and Delivery Systems – biomaterial-based drug and gene delivery, bio-responsive delivery of regulatory molecules, pharmaceutical engineering
Healthcare Advances – clinical translation, regulatory issues, patient safety, emerging trends
Imaging and Diagnostics – imaging agents and probes, theranostics, biosensors, monitoring
Manufacturing and Technology – 3D printing, inks, organ-on-a-chip, bioreactor/perfusion systems, microdevices, BioMEMS, optics and electronics interfaces with biomaterials, systems integration
Modeling and Informatics Tools – scaling methods to guide biomaterial design, predictive algorithms for structure-function, biomechanics, integrating bioinformatics with biomaterials discovery, metabolomics in the context of biomaterials
Tissue Engineering and Regenerative Medicine – basic and applied studies, cell therapies, scaffolds, vascularization, bioartificial organs, transplantation and functionality, cellular agriculture