Multiscale Simulations and Profiling of Human Thymidine Phosphorylase Mutations: Insights into Structural, Dynamics, and Functional Impacts in Mitochondrial Neurogastrointestinal Encephalopathy.

IF 2.8 2区 化学 Q3 CHEMISTRY, PHYSICAL The Journal of Physical Chemistry B Pub Date : 2025-03-20 DOI:10.1021/acs.jpcb.5c00771
Khushboo Bhagat, Amar Jeet Yadav, Aditya K Padhi
{"title":"Multiscale Simulations and Profiling of Human Thymidine Phosphorylase Mutations: Insights into Structural, Dynamics, and Functional Impacts in Mitochondrial Neurogastrointestinal Encephalopathy.","authors":"Khushboo Bhagat, Amar Jeet Yadav, Aditya K Padhi","doi":"10.1021/acs.jpcb.5c00771","DOIUrl":null,"url":null,"abstract":"<p><p>Mitochondrial neurogastrointestinal encephalopathy (MNGIE) is a rare metabolic disorder caused by missense mutations in the <i>TYMP</i> gene, leading to the loss of human thymidine phosphorylase (HTP) activity and subsequent mitochondrial dysfunction. Despite its well-characterized biochemical basis, the molecular mechanisms by which MNGIE-associated mutations alter HTP's structural stability, dynamics, and substrate (thymidine) binding remain unclear. In this study, we employ a multiscale computational approach, integrating AlphaFold2-based structural modeling, all-atom and coarse-grained molecular dynamics (MD) simulations, protein-ligand (HTP-thymidine) docking, HTP-thymidine complex simulations, binding free-energy landscape analysis, and systematic mutational profiling to investigate the impact of key MNGIE-associated mutations (R44Q, G145R, G153S, K222S, and E289A) on HTP function. Analyses of our long-duration multiscale simulations (comprising 9 μs coarse-grained, 1.2 μs all-atom apo HTP, and 1.2 μs HTP-thymidine complex MD simulations) and physicochemical properties reveal that while wild-type HTP maintains structural integrity and strong thymidine-binding affinity, MNGIE-associated mutations induce substantial destabilization, increased flexibility, and reduced enzymatic efficiency. Free-energy landscape analysis highlights a shift toward less stable conformational states in mutant HTPs, further supporting their functional impairment. Additionally, the G145R mutation introduces steric hindrance at the active site, preventing thymidine binding and causing off-site interactions. These findings not only provide fundamental insights into the physicochemical and dynamic alterations underlying HTP dysfunction in MNGIE but also establish a computational framework for guiding future experimental studies and the rational design of therapeutic interventions aimed at restoring HTP function.</p>","PeriodicalId":60,"journal":{"name":"The Journal of Physical Chemistry B","volume":" ","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry B","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.jpcb.5c00771","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Mitochondrial neurogastrointestinal encephalopathy (MNGIE) is a rare metabolic disorder caused by missense mutations in the TYMP gene, leading to the loss of human thymidine phosphorylase (HTP) activity and subsequent mitochondrial dysfunction. Despite its well-characterized biochemical basis, the molecular mechanisms by which MNGIE-associated mutations alter HTP's structural stability, dynamics, and substrate (thymidine) binding remain unclear. In this study, we employ a multiscale computational approach, integrating AlphaFold2-based structural modeling, all-atom and coarse-grained molecular dynamics (MD) simulations, protein-ligand (HTP-thymidine) docking, HTP-thymidine complex simulations, binding free-energy landscape analysis, and systematic mutational profiling to investigate the impact of key MNGIE-associated mutations (R44Q, G145R, G153S, K222S, and E289A) on HTP function. Analyses of our long-duration multiscale simulations (comprising 9 μs coarse-grained, 1.2 μs all-atom apo HTP, and 1.2 μs HTP-thymidine complex MD simulations) and physicochemical properties reveal that while wild-type HTP maintains structural integrity and strong thymidine-binding affinity, MNGIE-associated mutations induce substantial destabilization, increased flexibility, and reduced enzymatic efficiency. Free-energy landscape analysis highlights a shift toward less stable conformational states in mutant HTPs, further supporting their functional impairment. Additionally, the G145R mutation introduces steric hindrance at the active site, preventing thymidine binding and causing off-site interactions. These findings not only provide fundamental insights into the physicochemical and dynamic alterations underlying HTP dysfunction in MNGIE but also establish a computational framework for guiding future experimental studies and the rational design of therapeutic interventions aimed at restoring HTP function.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
5.80
自引率
9.10%
发文量
965
审稿时长
1.6 months
期刊介绍: An essential criterion for acceptance of research articles in the journal is that they provide new physical insight. Please refer to the New Physical Insights virtual issue on what constitutes new physical insight. Manuscripts that are essentially reporting data or applications of data are, in general, not suitable for publication in JPC B.
期刊最新文献
Issue Editorial Masthead Issue Publication Information Modulating Enzyme's Conformational Space: Impact of Substrate Binding, Mode Alteration, and Active Site Mutation in DapC, an Aminotransferase Enzyme of Lysine Biosynthetic Pathway. Local Diffusion Coefficients in Spherically Symmetric Systems Using the Smoluchowski Equation and Molecular Dynamics. Multiblock Copolymers at Liquid-Liquid Interfaces: Effect of the Block Sequence on Interfacial Tension and Polymer Conformation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1