Molecular Recognition and Chiral Discrimination from NMR and Multi-scale Simulations.

IF 3.9 2区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY Chemistry - A European Journal Pub Date : 2025-03-20 DOI:10.1002/chem.202404694
Tadeu Luiz Gomes Cabral, Joao Pedro Brussolo da Silva, Claudio Francisco Tormena, Matthias Stein
{"title":"Molecular Recognition and Chiral Discrimination from NMR and Multi-scale Simulations.","authors":"Tadeu Luiz Gomes Cabral, Joao Pedro Brussolo da Silva, Claudio Francisco Tormena, Matthias Stein","doi":"10.1002/chem.202404694","DOIUrl":null,"url":null,"abstract":"<p><p>Chiral molecules are particularly interesting to the pharmaceutical and agrochemical sectors due to their chemical and physical properties. Separation and identification of enantiomers are critical for a broad range of compounds, and discriminating stereoisomers in solution remains a key analytical challenge. Nuclear Magnetic Resonance (NMR) with Matrix-Assisted Diffusion-Ordered Spectroscopy (MAD), in the presence of chiral resolving agents, has emerged as a tool to explore these chiral mixtures. However, insight into the intermolecular interactions that lead to chiral recognition is still limited. Here, we combine experimental MAD studies with computational approaches to investigate the enantioselective discrimination of Mandelic Acid (MA) enantiomers using (R)-BINOL and (S)-BINOL. Molecular dynamics simulations explain the differences in diffusion coefficients for heterochiral complexes. Furthermore, quantum mechanical calculations confirmed enantioselective binding preferences due to differences in Gibbs free energies, highlighting the fundamental interactions and structural criteria that explain the NMR shielding and the diffusion trends. This integrated approach bridges experimental and theoretical studies, offering a comprehensive understanding of chiral recognition mechanisms and elucidating the observed heterochiral preference of BINOL for MA enantiomers. Our findings advance the field of chiral analysis and lay a foundation for future developments for identifying stereoisomers and recognition modes underlying enantioselective binding.</p>","PeriodicalId":144,"journal":{"name":"Chemistry - A European Journal","volume":" ","pages":"e202404694"},"PeriodicalIF":3.9000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemistry - A European Journal","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/chem.202404694","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Chiral molecules are particularly interesting to the pharmaceutical and agrochemical sectors due to their chemical and physical properties. Separation and identification of enantiomers are critical for a broad range of compounds, and discriminating stereoisomers in solution remains a key analytical challenge. Nuclear Magnetic Resonance (NMR) with Matrix-Assisted Diffusion-Ordered Spectroscopy (MAD), in the presence of chiral resolving agents, has emerged as a tool to explore these chiral mixtures. However, insight into the intermolecular interactions that lead to chiral recognition is still limited. Here, we combine experimental MAD studies with computational approaches to investigate the enantioselective discrimination of Mandelic Acid (MA) enantiomers using (R)-BINOL and (S)-BINOL. Molecular dynamics simulations explain the differences in diffusion coefficients for heterochiral complexes. Furthermore, quantum mechanical calculations confirmed enantioselective binding preferences due to differences in Gibbs free energies, highlighting the fundamental interactions and structural criteria that explain the NMR shielding and the diffusion trends. This integrated approach bridges experimental and theoretical studies, offering a comprehensive understanding of chiral recognition mechanisms and elucidating the observed heterochiral preference of BINOL for MA enantiomers. Our findings advance the field of chiral analysis and lay a foundation for future developments for identifying stereoisomers and recognition modes underlying enantioselective binding.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Chemistry - A European Journal
Chemistry - A European Journal 化学-化学综合
CiteScore
7.90
自引率
4.70%
发文量
1808
审稿时长
1.8 months
期刊介绍: Chemistry—A European Journal is a truly international journal with top quality contributions (2018 ISI Impact Factor: 5.16). It publishes a wide range of outstanding Reviews, Minireviews, Concepts, Full Papers, and Communications from all areas of chemistry and related fields. Based in Europe Chemistry—A European Journal provides an excellent platform for increasing the visibility of European chemistry as well as for featuring the best research from authors from around the world. All manuscripts are peer-reviewed, and electronic processing ensures accurate reproduction of text and data, plus short publication times. The Concepts section provides nonspecialist readers with a useful conceptual guide to unfamiliar areas and experts with new angles on familiar problems. Chemistry—A European Journal is published on behalf of ChemPubSoc Europe, a group of 16 national chemical societies from within Europe, and supported by the Asian Chemical Editorial Societies. The ChemPubSoc Europe family comprises: Angewandte Chemie, Chemistry—A European Journal, European Journal of Organic Chemistry, European Journal of Inorganic Chemistry, ChemPhysChem, ChemBioChem, ChemMedChem, ChemCatChem, ChemSusChem, ChemPlusChem, ChemElectroChem, and ChemistryOpen.
期刊最新文献
Towards White Light Emission Through Metal-to-Metal Charge Transfer (MMCT) Effect in Bi3+ Activated Ca2YTi2-mZrmGa3O12 (0≤m≤2) Garnets. Transitioning to Green Discovery-Based Catalysis. Carbene-Functionalized Bulky-Cyclopentadiene Rings. Recent Progress of Mechanofluorochromism and Mechanoluminescence for Phenothiazine Derivatives and Analogues. Self-Healing Behavior of Metallopolymers in Complex3D-Structures Obtained by DLP-Based 3D-Printing.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1