A Review of CO2 Hydrogenation to Liquid Fuels

IF 6.6 2区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY ChemSusChem Pub Date : 2025-03-20 DOI:10.1002/cssc.202402756
Ying Shi, Weizhe Gao, Guangbo Liu, Noritatsu Tsubaki
{"title":"A Review of CO2 Hydrogenation to Liquid Fuels","authors":"Ying Shi,&nbsp;Weizhe Gao,&nbsp;Guangbo Liu,&nbsp;Noritatsu Tsubaki","doi":"10.1002/cssc.202402756","DOIUrl":null,"url":null,"abstract":"<p>The combustion of fossil fuels has led to a growing level of CO<sub>2</sub> in atmosphere. The study about relief CO<sub>2</sub> emission has received wide attention. Many researchers focus on converting CO<sub>2</sub> into liquid fuels by thermochemical hydrogenation route, since its broad application prospects. In this review, we systematically discussed four dominating catalytic systems for CO<sub>2</sub> to liquid fuels, including Fe-based, Fe-based/Zeolite, Co-based and Oxide/Zeolite catalysts. The catalytic performances and reaction conditions of different catalysts are compared. The reaction pathways and the roles of various active sites in different catalytic systems are discussed. At the same time, we propose possible research directions based on the current problems in these catalytic systems. We hope that this review could provide inspiration for the development of efficient catalysts, the exploration of reaction pathways and the construction of novel catalytic systems.</p>","PeriodicalId":149,"journal":{"name":"ChemSusChem","volume":"18 11","pages":""},"PeriodicalIF":6.6000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemSusChem","FirstCategoryId":"92","ListUrlMain":"https://chemistry-europe.onlinelibrary.wiley.com/doi/10.1002/cssc.202402756","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The combustion of fossil fuels has led to a growing level of CO2 in atmosphere. The study about relief CO2 emission has received wide attention. Many researchers focus on converting CO2 into liquid fuels by thermochemical hydrogenation route, since its broad application prospects. In this review, we systematically discussed four dominating catalytic systems for CO2 to liquid fuels, including Fe-based, Fe-based/Zeolite, Co-based and Oxide/Zeolite catalysts. The catalytic performances and reaction conditions of different catalysts are compared. The reaction pathways and the roles of various active sites in different catalytic systems are discussed. At the same time, we propose possible research directions based on the current problems in these catalytic systems. We hope that this review could provide inspiration for the development of efficient catalysts, the exploration of reaction pathways and the construction of novel catalytic systems.

Abstract Image

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
二氧化碳加氢制液体燃料的研究进展。
化石燃料的燃烧导致了大气中二氧化碳含量的增加。缓解二氧化碳排放的研究受到了广泛的关注。利用热化学加氢途径将二氧化碳转化为液体燃料,具有广阔的应用前景,受到众多研究者的关注。本文系统地讨论了四种主要的催化体系,包括铁基、铁基/氧化物、钴基和氧化物/沸石催化剂。比较了不同催化剂的催化性能和反应条件。讨论了不同催化体系中不同活性位点的反应途径和作用。同时,针对这些催化体系目前存在的问题,提出了可能的研究方向。希望本文的研究成果能为高效催化剂的开发、反应途径的探索和新型催化体系的构建提供启示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ChemSusChem
ChemSusChem 化学-化学综合
CiteScore
15.80
自引率
4.80%
发文量
555
审稿时长
1.8 months
期刊介绍: ChemSusChem Impact Factor (2016): 7.226 Scope: Interdisciplinary journal Focuses on research at the interface of chemistry and sustainability Features the best research on sustainability and energy Areas Covered: Chemistry Materials Science Chemical Engineering Biotechnology
期刊最新文献
Molecular-Bridged Core-Shell TiO2@CuFe Conductive Metal-Organic Framework Photoanode for Hydroxyl Radical-Mediated Selective Glycerol Oxidation to Glyceraldehyde. Material Engineering of Cu0/Cu+ Sites and Oxygen Vacancies for Efficient In Situ Hydrodeoxygenation of Lignin-Based Compounds. Influence of Impurities on the Electrochemical Upcycling of Biomass. Ozonolysis of Lignin: From Extensive Degradation to Selective Ring-Opening Oxidation. Design of Alkaline Earth-Doped Co/MgO Catalysts for Ammonia Decomposition.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1