A Novel 3D High-Throughput Phenotypic Drug Screening Pipeline to Identify Drugs with Repurposing Potential for the Treatment of Ovarian Cancer.

IF 10 2区 医学 Q1 ENGINEERING, BIOMEDICAL Advanced Healthcare Materials Pub Date : 2025-03-20 DOI:10.1002/adhm.202404117
Nazanin Karimnia, Amy L Wilson, Brittany R Doran, Jennie Do, Amelia Matthews, Gwo Y Ho, Magdalena Plebanski, Thomas W Jobling, Andrew N Stephens, Maree Bilandzic
{"title":"A Novel 3D High-Throughput Phenotypic Drug Screening Pipeline to Identify Drugs with Repurposing Potential for the Treatment of Ovarian Cancer.","authors":"Nazanin Karimnia, Amy L Wilson, Brittany R Doran, Jennie Do, Amelia Matthews, Gwo Y Ho, Magdalena Plebanski, Thomas W Jobling, Andrew N Stephens, Maree Bilandzic","doi":"10.1002/adhm.202404117","DOIUrl":null,"url":null,"abstract":"<p><p>Ovarian cancer (OC) poses a significant clinical challenge due to its high recurrence rates and resistance to standard therapies, particularly in advanced stages where recurrence is common, and treatment is predominantly palliative. Personalized treatments, while effective in other cancers, remain underutilized in OC due to a lack of reliable biomarkers predicting clinical outcomes. Accordingly, precision medicine approaches are limited, with PARP inhibitors showing efficacy only in specific genetic contexts. Drug repurposing offers a promising, rapidly translatable strategy by leveraging existing pharmacological data to identify new treatments for OC. Patient-derived polyclonal spheroids, isolated from ascites fluid closely mimic the clinical behavior of OC, providing a valuable model for drug testing. Using these spheroids, a high-throughput drug screening pipeline capable of evaluating both cytotoxicity and anti-migratory properties of a diverse drug library, including FDA-approved, investigational, and newly approved compounds is developed. The findings highlight the importance of 3D culture systems, revealing a poor correlation between drug efficacy in traditional 2D models and more clinically relevant 3D spheroids. This approach has expedited the identification of promising candidates, such as rapamycin, which demonstrated limited activity as a monotherapy but synergized effectively with standard treatments like cisplatin and paclitaxel in vitro. In combination with platinum-based therapy, Rapamycin led to significant in vitro cytotoxicity and a marked reduction in tumor burden in a syngeneic in vivo model. This proof-of-concept study underscores the potential of drug repurposing to rapidly advance new treatments into clinical trials for OC, offering renewed hope for patients with advanced disease.</p>","PeriodicalId":113,"journal":{"name":"Advanced Healthcare Materials","volume":" ","pages":"e2404117"},"PeriodicalIF":10.0000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Healthcare Materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/adhm.202404117","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Ovarian cancer (OC) poses a significant clinical challenge due to its high recurrence rates and resistance to standard therapies, particularly in advanced stages where recurrence is common, and treatment is predominantly palliative. Personalized treatments, while effective in other cancers, remain underutilized in OC due to a lack of reliable biomarkers predicting clinical outcomes. Accordingly, precision medicine approaches are limited, with PARP inhibitors showing efficacy only in specific genetic contexts. Drug repurposing offers a promising, rapidly translatable strategy by leveraging existing pharmacological data to identify new treatments for OC. Patient-derived polyclonal spheroids, isolated from ascites fluid closely mimic the clinical behavior of OC, providing a valuable model for drug testing. Using these spheroids, a high-throughput drug screening pipeline capable of evaluating both cytotoxicity and anti-migratory properties of a diverse drug library, including FDA-approved, investigational, and newly approved compounds is developed. The findings highlight the importance of 3D culture systems, revealing a poor correlation between drug efficacy in traditional 2D models and more clinically relevant 3D spheroids. This approach has expedited the identification of promising candidates, such as rapamycin, which demonstrated limited activity as a monotherapy but synergized effectively with standard treatments like cisplatin and paclitaxel in vitro. In combination with platinum-based therapy, Rapamycin led to significant in vitro cytotoxicity and a marked reduction in tumor burden in a syngeneic in vivo model. This proof-of-concept study underscores the potential of drug repurposing to rapidly advance new treatments into clinical trials for OC, offering renewed hope for patients with advanced disease.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Advanced Healthcare Materials
Advanced Healthcare Materials 工程技术-生物材料
CiteScore
14.40
自引率
3.00%
发文量
600
审稿时长
1.8 months
期刊介绍: Advanced Healthcare Materials, a distinguished member of the esteemed Advanced portfolio, has been dedicated to disseminating cutting-edge research on materials, devices, and technologies for enhancing human well-being for over ten years. As a comprehensive journal, it encompasses a wide range of disciplines such as biomaterials, biointerfaces, nanomedicine and nanotechnology, tissue engineering, and regenerative medicine.
期刊最新文献
Engineered Hollow Nanocomplex Combining Photothermal and Antioxidant Strategies for Targeted Tregs Depletion and Potent Immune Activation in Tumor Immunotherapy. Functionalized Cerium Oxide Nanoparticles Enhance Penetration into Melanoma Spheroids In Vivo through Angiogenesis. A Novel 3D High-Throughput Phenotypic Drug Screening Pipeline to Identify Drugs with Repurposing Potential for the Treatment of Ovarian Cancer. A Novel pH-Responsive Baicalein@Chitosan Hydrogel for the Topical Treatment of Herpes Simplex Virus Type 1 Skin Infections: Therapeutic Potential and Mechanisms. An Expandable Brain-Machine Interface Enabled by Origami Materials and Structures for Tracking Epileptic Traveling Waves.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1