A Novel pH-Responsive Baicalein@Chitosan Hydrogel for the Topical Treatment of Herpes Simplex Virus Type 1 Skin Infections: Therapeutic Potential and Mechanisms.

IF 10 2区 医学 Q1 ENGINEERING, BIOMEDICAL Advanced Healthcare Materials Pub Date : 2025-03-20 DOI:10.1002/adhm.202403961
Yuhui Lu, Liying Zhou, Alu Ouyang, Xin Wang, Xiaoyang Wei, Shangping Xing, Feifei Nong, Jinquan Lin, Haotong Wang, Yuan Li, Jie Deng, Yilu Bao, Jie Yang, Ronghua Jin, Zhuo Luo
{"title":"A Novel pH-Responsive Baicalein@Chitosan Hydrogel for the Topical Treatment of Herpes Simplex Virus Type 1 Skin Infections: Therapeutic Potential and Mechanisms.","authors":"Yuhui Lu, Liying Zhou, Alu Ouyang, Xin Wang, Xiaoyang Wei, Shangping Xing, Feifei Nong, Jinquan Lin, Haotong Wang, Yuan Li, Jie Deng, Yilu Bao, Jie Yang, Ronghua Jin, Zhuo Luo","doi":"10.1002/adhm.202403961","DOIUrl":null,"url":null,"abstract":"<p><p>Herpes simplex virus type 1 (HSV-1) is a prevalent human pathogen primarily transmitted through skin-to-skin contact. Traditional antiviral drugs like acyclovir (ACV) have limitations due to viral resistance and side effects, necessitating the development of alternative therapeutic strategies. Drug-loaded hydrogels have emerged as a promising approach for managing various skin infections. Considering the low-pH microenvironment following HSV-1 infection, a pH-responsive baicalein@chitosan (B@C) hydrogel is developed for the topical treatment of HSV-1 skin infections. This hydrogel is synthesized by incorporating baicalein, a natural flavonoid, into a chitosan matrix modified with 4-formylphenylboronic acid and protocatechualdehyde to achieve potent anti-HSV-1 activity and pH-responsiveness. In vitro results demonstrated the hydrogel's pH-dependent inhibitory effect on HSV-1 infections, including ACV-resistant strains. Subsequent investigations confirmed its efficacy in multiple murine infection models. Mechanistically, the B@C hydrogel inhibited viral replication by modulating the phosphorylation of inhibitor of nuclear factor kappa-B kinase subunit beta, promoted collagen synthesis, and decreased reactive oxygen species generation. Ultra-high-performance liquid chromatography-tandem mass spectrometry analysis revealed a sustained release of baicalein from the hydrogel, ensuring long-term drug retention in HSV-1-infected skin tissues. Collectively, these findings suggest that the B@C hydrogel holds significant potential for the therapeutic management of HSV-1 skin infections.</p>","PeriodicalId":113,"journal":{"name":"Advanced Healthcare Materials","volume":" ","pages":"e2403961"},"PeriodicalIF":10.0000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Healthcare Materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/adhm.202403961","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Herpes simplex virus type 1 (HSV-1) is a prevalent human pathogen primarily transmitted through skin-to-skin contact. Traditional antiviral drugs like acyclovir (ACV) have limitations due to viral resistance and side effects, necessitating the development of alternative therapeutic strategies. Drug-loaded hydrogels have emerged as a promising approach for managing various skin infections. Considering the low-pH microenvironment following HSV-1 infection, a pH-responsive baicalein@chitosan (B@C) hydrogel is developed for the topical treatment of HSV-1 skin infections. This hydrogel is synthesized by incorporating baicalein, a natural flavonoid, into a chitosan matrix modified with 4-formylphenylboronic acid and protocatechualdehyde to achieve potent anti-HSV-1 activity and pH-responsiveness. In vitro results demonstrated the hydrogel's pH-dependent inhibitory effect on HSV-1 infections, including ACV-resistant strains. Subsequent investigations confirmed its efficacy in multiple murine infection models. Mechanistically, the B@C hydrogel inhibited viral replication by modulating the phosphorylation of inhibitor of nuclear factor kappa-B kinase subunit beta, promoted collagen synthesis, and decreased reactive oxygen species generation. Ultra-high-performance liquid chromatography-tandem mass spectrometry analysis revealed a sustained release of baicalein from the hydrogel, ensuring long-term drug retention in HSV-1-infected skin tissues. Collectively, these findings suggest that the B@C hydrogel holds significant potential for the therapeutic management of HSV-1 skin infections.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Advanced Healthcare Materials
Advanced Healthcare Materials 工程技术-生物材料
CiteScore
14.40
自引率
3.00%
发文量
600
审稿时长
1.8 months
期刊介绍: Advanced Healthcare Materials, a distinguished member of the esteemed Advanced portfolio, has been dedicated to disseminating cutting-edge research on materials, devices, and technologies for enhancing human well-being for over ten years. As a comprehensive journal, it encompasses a wide range of disciplines such as biomaterials, biointerfaces, nanomedicine and nanotechnology, tissue engineering, and regenerative medicine.
期刊最新文献
Engineered Hollow Nanocomplex Combining Photothermal and Antioxidant Strategies for Targeted Tregs Depletion and Potent Immune Activation in Tumor Immunotherapy. Functionalized Cerium Oxide Nanoparticles Enhance Penetration into Melanoma Spheroids In Vivo through Angiogenesis. A Novel 3D High-Throughput Phenotypic Drug Screening Pipeline to Identify Drugs with Repurposing Potential for the Treatment of Ovarian Cancer. A Novel pH-Responsive Baicalein@Chitosan Hydrogel for the Topical Treatment of Herpes Simplex Virus Type 1 Skin Infections: Therapeutic Potential and Mechanisms. An Expandable Brain-Machine Interface Enabled by Origami Materials and Structures for Tracking Epileptic Traveling Waves.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1