An Expandable Brain-Machine Interface Enabled by Origami Materials and Structures for Tracking Epileptic Traveling Waves

IF 9.6 2区 医学 Q1 ENGINEERING, BIOMEDICAL Advanced Healthcare Materials Pub Date : 2025-03-20 DOI:10.1002/adhm.202404947
Tiancheng Sheng, Jingwei Li, Lingyi Zheng, Nianzhen Du, Mingxiao Xie, Xiaolong Wang, Xize Gao, Mengsha Huang, Shenghan Wen, Wenqian Liu, Yong Guo, Yi Yao, Xiaoqiu Shao, Lianqing Liu, Jing Xu, Yilong Wang, Mingjun Zhang
{"title":"An Expandable Brain-Machine Interface Enabled by Origami Materials and Structures for Tracking Epileptic Traveling Waves","authors":"Tiancheng Sheng,&nbsp;Jingwei Li,&nbsp;Lingyi Zheng,&nbsp;Nianzhen Du,&nbsp;Mingxiao Xie,&nbsp;Xiaolong Wang,&nbsp;Xize Gao,&nbsp;Mengsha Huang,&nbsp;Shenghan Wen,&nbsp;Wenqian Liu,&nbsp;Yong Guo,&nbsp;Yi Yao,&nbsp;Xiaoqiu Shao,&nbsp;Lianqing Liu,&nbsp;Jing Xu,&nbsp;Yilong Wang,&nbsp;Mingjun Zhang","doi":"10.1002/adhm.202404947","DOIUrl":null,"url":null,"abstract":"<p>Tracking neural activities across multiple brain regions remains a daunting challenge due to the non-negligible skull injuries during implantations of large-area electrocorticography (ECoG) grids and the limited spatial accessibility of conventional rectilinear depth probes. Here, a multiregion Brain-machine Interface (BMI) is proposed comprising an expandable bio-inspired origami ECoG electrode covering cortical areas larger than the cranial window, and an expandable origami depth probe capable of reaching multiple deep brain regions beyond a single implantation axis. Using the proposed BMI, it is observed that, in rat models of focal seizures, cortical multiband epileptiform activities mainly manifest as expanding traveling waves outward from a cortical source.</p>","PeriodicalId":113,"journal":{"name":"Advanced Healthcare Materials","volume":"14 11","pages":""},"PeriodicalIF":9.6000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Healthcare Materials","FirstCategoryId":"5","ListUrlMain":"https://advanced.onlinelibrary.wiley.com/doi/10.1002/adhm.202404947","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Tracking neural activities across multiple brain regions remains a daunting challenge due to the non-negligible skull injuries during implantations of large-area electrocorticography (ECoG) grids and the limited spatial accessibility of conventional rectilinear depth probes. Here, a multiregion Brain-machine Interface (BMI) is proposed comprising an expandable bio-inspired origami ECoG electrode covering cortical areas larger than the cranial window, and an expandable origami depth probe capable of reaching multiple deep brain regions beyond a single implantation axis. Using the proposed BMI, it is observed that, in rat models of focal seizures, cortical multiband epileptiform activities mainly manifest as expanding traveling waves outward from a cortical source.

Abstract Image

Abstract Image

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种由折纸材料和结构实现的可扩展脑机接口,用于跟踪癫痫行波。
由于大面积皮质电图(ECoG)网格植入过程中不可忽略的颅骨损伤以及传统直线深度探针的空间可及性有限,跟踪跨多个脑区域的神经活动仍然是一项艰巨的挑战。本文提出了一个多区域脑机接口(BMI),包括一个可扩展的仿生折纸ECoG电极,覆盖比颅窗更大的皮质区域,以及一个可扩展的折纸深度探针,能够到达超过单个植入轴的多个脑深部区域。使用所提出的BMI,观察到,在局灶性癫痫大鼠模型中,皮质多波段癫痫样活动主要表现为从皮质源向外扩展的行波。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Advanced Healthcare Materials
Advanced Healthcare Materials 工程技术-生物材料
CiteScore
14.40
自引率
3.00%
发文量
600
审稿时长
1.8 months
期刊介绍: Advanced Healthcare Materials, a distinguished member of the esteemed Advanced portfolio, has been dedicated to disseminating cutting-edge research on materials, devices, and technologies for enhancing human well-being for over ten years. As a comprehensive journal, it encompasses a wide range of disciplines such as biomaterials, biointerfaces, nanomedicine and nanotechnology, tissue engineering, and regenerative medicine.
期刊最新文献
Fabrication and Stimulation Training of Engineered Skeletal Muscle Tissues. Bioengineered MXene-Polymer-Metal Composites: From Synthesis and Structure to Multimodal Diagnostic and Therapeutic Applications. Near-Infrared-II Photothermal Agents Targeting Lipid Droplets to Ameliorate Obesity Through Induction of Adipose Tissue Browning. Orchestrating Scarless Spinal Cord Repair: Dynamic Glial-Immune Interplay and Biomaterial Support. Development of a Multifunctional, Moisture-Responsive Bioadhesive Powder for Rapid Hemostasis, Drug Delivery, and Photothermal Therapy.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1