Yifan Wang, Jia You Sarafina Choe, Yu Shi, Thi Tun Thi, Xiaoyun Cao, Yang Hu, Kai Yan Cheng, Hui Li, Yang Ji, Yan Liu, Matthew Ackers-Johnson, Roger S Y Foo, Yujia Shen, Haojie Yu
{"title":"Depletion of Hepatic SREBP2 Protects Against Hypercholesterolemia and Atherosclerosis through the ANGPTL3-LPL Axis.","authors":"Yifan Wang, Jia You Sarafina Choe, Yu Shi, Thi Tun Thi, Xiaoyun Cao, Yang Hu, Kai Yan Cheng, Hui Li, Yang Ji, Yan Liu, Matthew Ackers-Johnson, Roger S Y Foo, Yujia Shen, Haojie Yu","doi":"10.1002/advs.202412677","DOIUrl":null,"url":null,"abstract":"<p><p>Lipolysis of triglyceride-rich lipoproteins by peripheral lipoprotein lipase (LPL) plays an essential role in maintaining systemic cholesterol/lipid homeostasis. Human genetic studies have unequivocally demonstrated that activation of LPL pathway reduces risks for both coronary artery disease (CAD) and type 2 diabetes (T2D). Although sterol regulatory element-binding protein 2 (SREBP2) is well established as the master transcription factor that regulates the hepatic biosynthesis of both cholesterol and fatty acids, whether and how its activity in liver interacts with peripheral LPL pathway remains unknown. Here, it is demonstrated that acute liver-specific depletion of SREBP2 results in divergent effects on the regulation of peripheral LPL activity in mice, depending on the presence or absence of low-density lipoprotein receptors (LDLR). SREBP2 deficiency drastically elevates peripheral LPL activity through downregulation of plasma angiopoietin-related protein 3 (ANGPTL3) levels in LDLR-deficient mice. Moreover, in addition to SREBP2's transcriptional regulation of ANGPTL3, it is found that SREBP2 promotes proteasome-based degradation of ANGPTL3 in the presence of LDLR. Remarkably, acute depletion of hepatic SREBP2 protects against hypercholesterolemia and atherosclerosis, in which atherosclerotic lesions are reduced by 45% compared to control littermates. Taken together, these findings outline a liver-peripheral crosstalk mediated by SREBP2-ANGPTL3-LPL axis and suggest that SREBP2 inhibition can be an effective strategy to tackle homozygous familial hypercholesterolemia (HoFH).</p>","PeriodicalId":117,"journal":{"name":"Advanced Science","volume":" ","pages":"e2412677"},"PeriodicalIF":14.3000,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Science","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/advs.202412677","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Lipolysis of triglyceride-rich lipoproteins by peripheral lipoprotein lipase (LPL) plays an essential role in maintaining systemic cholesterol/lipid homeostasis. Human genetic studies have unequivocally demonstrated that activation of LPL pathway reduces risks for both coronary artery disease (CAD) and type 2 diabetes (T2D). Although sterol regulatory element-binding protein 2 (SREBP2) is well established as the master transcription factor that regulates the hepatic biosynthesis of both cholesterol and fatty acids, whether and how its activity in liver interacts with peripheral LPL pathway remains unknown. Here, it is demonstrated that acute liver-specific depletion of SREBP2 results in divergent effects on the regulation of peripheral LPL activity in mice, depending on the presence or absence of low-density lipoprotein receptors (LDLR). SREBP2 deficiency drastically elevates peripheral LPL activity through downregulation of plasma angiopoietin-related protein 3 (ANGPTL3) levels in LDLR-deficient mice. Moreover, in addition to SREBP2's transcriptional regulation of ANGPTL3, it is found that SREBP2 promotes proteasome-based degradation of ANGPTL3 in the presence of LDLR. Remarkably, acute depletion of hepatic SREBP2 protects against hypercholesterolemia and atherosclerosis, in which atherosclerotic lesions are reduced by 45% compared to control littermates. Taken together, these findings outline a liver-peripheral crosstalk mediated by SREBP2-ANGPTL3-LPL axis and suggest that SREBP2 inhibition can be an effective strategy to tackle homozygous familial hypercholesterolemia (HoFH).
期刊介绍:
Advanced Science is a prestigious open access journal that focuses on interdisciplinary research in materials science, physics, chemistry, medical and life sciences, and engineering. The journal aims to promote cutting-edge research by employing a rigorous and impartial review process. It is committed to presenting research articles with the highest quality production standards, ensuring maximum accessibility of top scientific findings. With its vibrant and innovative publication platform, Advanced Science seeks to revolutionize the dissemination and organization of scientific knowledge.