Preoperative prediction of pancreatic neuroendocrine tumors grade based on computed tomography, magnetic resonance imaging and endoscopic ultrasonography

IF 2.2 3区 医学 Q2 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING Abdominal Radiology Pub Date : 2025-03-19 DOI:10.1007/s00261-025-04865-4
Yu Xie, Elyar Abaydulla, Song Zhang, Haobai Liu, Hexing Hang, Qi Li, Yudong Qiu, Hao Cheng
{"title":"Preoperative prediction of pancreatic neuroendocrine tumors grade based on computed tomography, magnetic resonance imaging and endoscopic ultrasonography","authors":"Yu Xie,&nbsp;Elyar Abaydulla,&nbsp;Song Zhang,&nbsp;Haobai Liu,&nbsp;Hexing Hang,&nbsp;Qi Li,&nbsp;Yudong Qiu,&nbsp;Hao Cheng","doi":"10.1007/s00261-025-04865-4","DOIUrl":null,"url":null,"abstract":"<div><h3>Purpose</h3><p>To establish a preoperative prediction model for pathological grade of PanNETs based on computed tomography (CT), magnetic resonance imaging (MRI) and endoscopic ultrasonography (EUS).</p><h3>Methods</h3><p>Clinical data of 58 patients with pathologically confirmed PanNETs were included in this retrospectively study and they were divided into grade 1 and grade 2/3. CT, MRI and EUS images were collected within one week before surgery. A clinical predictive model based on the independent clinical risk factors and significant radiological features was established. The area under receiver operating characteristic curve (AUC) was performed to assess the model.</p><h3>Results</h3><p>Gender, pancreatic duct dilatation (PDD) and portal enhancement ratio (PER) were the independent predictors for PanNETs grading (<i>P</i> &lt; 0.05). PanNETs grade 1 and grade 2/3 had statistical difference in elastography score (<i>P =</i> 0.001). The combination of gender, PDD and PER had better predictive efficiency than each of these three predictors alone, with a high AUC of 0.925. The elastography score also achieved an AUC of 0.838.</p><h3>Conclusion</h3><p>We proposed a comprehensive model based on preoperative CT, MRI and EUS to predict grade 1 and grade 2/3 of PanNETs and better informs clinicians on individualized diagnosis and treatment of patients with PanNETs.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":7126,"journal":{"name":"Abdominal Radiology","volume":"50 10","pages":"4553 - 4562"},"PeriodicalIF":2.2000,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00261-025-04865-4.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Abdominal Radiology","FirstCategoryId":"3","ListUrlMain":"https://link.springer.com/article/10.1007/s00261-025-04865-4","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

Abstract

Purpose

To establish a preoperative prediction model for pathological grade of PanNETs based on computed tomography (CT), magnetic resonance imaging (MRI) and endoscopic ultrasonography (EUS).

Methods

Clinical data of 58 patients with pathologically confirmed PanNETs were included in this retrospectively study and they were divided into grade 1 and grade 2/3. CT, MRI and EUS images were collected within one week before surgery. A clinical predictive model based on the independent clinical risk factors and significant radiological features was established. The area under receiver operating characteristic curve (AUC) was performed to assess the model.

Results

Gender, pancreatic duct dilatation (PDD) and portal enhancement ratio (PER) were the independent predictors for PanNETs grading (P < 0.05). PanNETs grade 1 and grade 2/3 had statistical difference in elastography score (P = 0.001). The combination of gender, PDD and PER had better predictive efficiency than each of these three predictors alone, with a high AUC of 0.925. The elastography score also achieved an AUC of 0.838.

Conclusion

We proposed a comprehensive model based on preoperative CT, MRI and EUS to predict grade 1 and grade 2/3 of PanNETs and better informs clinicians on individualized diagnosis and treatment of patients with PanNETs.

Graphical Abstract

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
术前基于计算机断层扫描、磁共振成像和超声内镜的胰腺神经内分泌肿瘤分级预测。
目的:建立基于计算机断层扫描(CT)、磁共振成像(MRI)和超声内镜(EUS)的PanNETs病理分级术前预测模型。方法:回顾性分析58例经病理证实的PanNETs患者的临床资料,分为1级和2/3级。术前1周内采集CT、MRI、EUS图像。建立基于独立临床危险因素和重要影像学特征的临床预测模型。采用受试者工作特征曲线下面积(AUC)对模型进行评价。结果:性别、胰管扩张(PDD)和门静脉增强比(PER)是PanNETs分级的独立预测因素(P结论:我们提出了一个基于术前CT、MRI和EUS的综合模型来预测PanNETs的1级和2/3级,更好地为临床医生提供PanNETs患者的个性化诊断和治疗。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Abdominal Radiology
Abdominal Radiology Medicine-Radiology, Nuclear Medicine and Imaging
CiteScore
5.20
自引率
8.30%
发文量
334
期刊介绍: Abdominal Radiology seeks to meet the professional needs of the abdominal radiologist by publishing clinically pertinent original, review and practice related articles on the gastrointestinal and genitourinary tracts and abdominal interventional and radiologic procedures. Case reports are generally not accepted unless they are the first report of a new disease or condition, or part of a special solicited section. Reasons to Publish Your Article in Abdominal Radiology: · Official journal of the Society of Abdominal Radiology (SAR) · Published in Cooperation with: European Society of Gastrointestinal and Abdominal Radiology (ESGAR) European Society of Urogenital Radiology (ESUR) Asian Society of Abdominal Radiology (ASAR) · Efficient handling and Expeditious review · Author feedback is provided in a mentoring style · Global readership · Readers can earn CME credits
期刊最新文献
Navigating the new frontier: growth, integrity, and our vision for 2026 Correction to: Pictorial review of multiparametric MRI in bladder urothelial carcinoma with variant histology: pearls and pitfalls. Correction to: A case of immunoglobulin G4-related disease with a urethral lesion diagnosed by radiological imaging before biopsy. Correction to: Impact of anatomical features of non-thrombotic left iliac venous compression on the development of venous leg ulcers based on CT venography. Corrigendum to "Computed tomography-based prediction model for identifying patients with high probability of non-muscle-invasive bladder cancer" [Abdominal Radiology (2024) 49:163-172.].
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1