Ivan Shih-Chun Liu, Fangyuan Liu, Qi Zhong, Shiguang Ni
{"title":"A finger on the pulse of cardiovascular health: estimating blood pressure with smartphone photoplethysmography-based pulse waveform analysis.","authors":"Ivan Shih-Chun Liu, Fangyuan Liu, Qi Zhong, Shiguang Ni","doi":"10.1186/s12938-025-01365-w","DOIUrl":null,"url":null,"abstract":"<p><p>Smartphone photoplethysmography (PPG) offers a cost-effective and accessible method for continuous blood pressure (BP) monitoring, but faces persistent challenges with accuracy and interpretability. This study addresses these limitations through a series of strategies. Data quality was enhanced to improve the performance of traditional statistical models, while SHapley Additive exPlanations (SHAP) analysis ensured transparency in machine learning models. Waveform features were analyzed to establish theoretical connections with BP measures, and feature engineering techniques were applied to enhance prediction accuracy and model interpretability. Bland-Altman analysis was conducted, and the results were compared against reference devices using multiple international standards to evaluate the method's feasibility. Data collected from 127 participants demonstrated strong correlations between smartphone-derived digital waveform features and those from reference BP devices. The mean absolute errors (MAE) for systolic BP (SBP), diastolic BP (DBP), and pulse pressure (PP) using multiple linear regression models were 7.75, 6.35, and 4.49 mmHg, respectively. Random forest models further improved these values to 7.34, 5.79, and 4.45 mmHg. Feature importance analysis identified key contributions from time-domain, frequency-domain, curvature-domain, and demographic features. However, Bland-Altman analysis revealed systematic biases, and the models barely meet established accuracy standards. These findings suggest that while smartphone PPG technology shows promise, significant advancements are required before it can replace traditional BP measurement devices.</p>","PeriodicalId":8927,"journal":{"name":"BioMedical Engineering OnLine","volume":"24 1","pages":"36"},"PeriodicalIF":2.9000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11924600/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BioMedical Engineering OnLine","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1186/s12938-025-01365-w","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Smartphone photoplethysmography (PPG) offers a cost-effective and accessible method for continuous blood pressure (BP) monitoring, but faces persistent challenges with accuracy and interpretability. This study addresses these limitations through a series of strategies. Data quality was enhanced to improve the performance of traditional statistical models, while SHapley Additive exPlanations (SHAP) analysis ensured transparency in machine learning models. Waveform features were analyzed to establish theoretical connections with BP measures, and feature engineering techniques were applied to enhance prediction accuracy and model interpretability. Bland-Altman analysis was conducted, and the results were compared against reference devices using multiple international standards to evaluate the method's feasibility. Data collected from 127 participants demonstrated strong correlations between smartphone-derived digital waveform features and those from reference BP devices. The mean absolute errors (MAE) for systolic BP (SBP), diastolic BP (DBP), and pulse pressure (PP) using multiple linear regression models were 7.75, 6.35, and 4.49 mmHg, respectively. Random forest models further improved these values to 7.34, 5.79, and 4.45 mmHg. Feature importance analysis identified key contributions from time-domain, frequency-domain, curvature-domain, and demographic features. However, Bland-Altman analysis revealed systematic biases, and the models barely meet established accuracy standards. These findings suggest that while smartphone PPG technology shows promise, significant advancements are required before it can replace traditional BP measurement devices.
期刊介绍:
BioMedical Engineering OnLine is an open access, peer-reviewed journal that is dedicated to publishing research in all areas of biomedical engineering.
BioMedical Engineering OnLine is aimed at readers and authors throughout the world, with an interest in using tools of the physical and data sciences and techniques in engineering to understand and solve problems in the biological and medical sciences. Topical areas include, but are not limited to:
Bioinformatics-
Bioinstrumentation-
Biomechanics-
Biomedical Devices & Instrumentation-
Biomedical Signal Processing-
Healthcare Information Systems-
Human Dynamics-
Neural Engineering-
Rehabilitation Engineering-
Biomaterials-
Biomedical Imaging & Image Processing-
BioMEMS and On-Chip Devices-
Bio-Micro/Nano Technologies-
Biomolecular Engineering-
Biosensors-
Cardiovascular Systems Engineering-
Cellular Engineering-
Clinical Engineering-
Computational Biology-
Drug Delivery Technologies-
Modeling Methodologies-
Nanomaterials and Nanotechnology in Biomedicine-
Respiratory Systems Engineering-
Robotics in Medicine-
Systems and Synthetic Biology-
Systems Biology-
Telemedicine/Smartphone Applications in Medicine-
Therapeutic Systems, Devices and Technologies-
Tissue Engineering