The role of multicriteria decision analysis in the development of candidate classification criteria for antisynthetase syndrome: analysis from the CLASS project.

IF 20.3 1区 医学 Q1 RHEUMATOLOGY Annals of the Rheumatic Diseases Pub Date : 2025-03-18 DOI:10.1016/j.ard.2025.01.050
Giovanni Zanframundo, Eduardo Dourado, Iazsmin Bauer-Ventura, Sara Faghihi-Kashani, Akira Yoshida, Aravinthan Loganathan, Daphne Rivero-Gallegos, Darosa Lim, Francisca Bozán, Gianluca Sambataro, Sangmee Sharon Bae, Yasuhiko Yamano, Francesco Bonella, Tamera J Corte, Tracy Jennifer Doyle, David Fiorentino, Miguel Angel Gonzalez-Gay, Marie Hudson, Masataka Kuwana, Ingrid E Lundberg, Andrew Mammen, Neil McHugh, Frederick W Miller, Carlomaurizio Montecucco, Chester V Oddis, Jorge Rojas-Serrano, Jens Schmidt, Albert Selva-O'Callaghan, Victoria P Werth, Paul Hansen, Davide Rozza, Carlo A Scirè, Garifallia Sakellariou, Yuko Kaneko, Konstantinos Triantafyllias, Santos Castañeda, Maria Laura Alberti, Martín Gerardo Greco Merino, Christopher Fiehn, Yair Molad, Marcello Govoni, Ran Nakashima, Erkan Alpsoy, Margherita Giannini, Hector Chinoy, Laure Gallay, Esther Ebstein, Julien Campagne, André Pinto Saraiva, Edoardo Conticini, Gian Domenico Sebastiani, Laura Nuño-Nuño, Salvatore Scarpato, Elena Schiopu, Matthew Parker, Massimiliano Limonta, Lorenzo Cavagna, Rohit Aggarwal
{"title":"The role of multicriteria decision analysis in the development of candidate classification criteria for antisynthetase syndrome: analysis from the CLASS project.","authors":"Giovanni Zanframundo, Eduardo Dourado, Iazsmin Bauer-Ventura, Sara Faghihi-Kashani, Akira Yoshida, Aravinthan Loganathan, Daphne Rivero-Gallegos, Darosa Lim, Francisca Bozán, Gianluca Sambataro, Sangmee Sharon Bae, Yasuhiko Yamano, Francesco Bonella, Tamera J Corte, Tracy Jennifer Doyle, David Fiorentino, Miguel Angel Gonzalez-Gay, Marie Hudson, Masataka Kuwana, Ingrid E Lundberg, Andrew Mammen, Neil McHugh, Frederick W Miller, Carlomaurizio Montecucco, Chester V Oddis, Jorge Rojas-Serrano, Jens Schmidt, Albert Selva-O'Callaghan, Victoria P Werth, Paul Hansen, Davide Rozza, Carlo A Scirè, Garifallia Sakellariou, Yuko Kaneko, Konstantinos Triantafyllias, Santos Castañeda, Maria Laura Alberti, Martín Gerardo Greco Merino, Christopher Fiehn, Yair Molad, Marcello Govoni, Ran Nakashima, Erkan Alpsoy, Margherita Giannini, Hector Chinoy, Laure Gallay, Esther Ebstein, Julien Campagne, André Pinto Saraiva, Edoardo Conticini, Gian Domenico Sebastiani, Laura Nuño-Nuño, Salvatore Scarpato, Elena Schiopu, Matthew Parker, Massimiliano Limonta, Lorenzo Cavagna, Rohit Aggarwal","doi":"10.1016/j.ard.2025.01.050","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>To develop and evaluate the performance of multicriteria decision analysis (MCDA)-driven candidate classification criteria for antisynthetase syndrome (ASSD).</p><p><strong>Methods: </strong>A list of variables associated with ASSD was developed using a systematic literature review and then refined into an ASSD key domains and variables list by myositis and interstitial lung disease (ILD) experts. This list was used to create preferences surveys in which experts were presented with pairwise comparisons of clinical vignettes and asked to select the case that was more likely to represent ASSD. Experts' answers were analysed using the Potentially All Pairwise RanKings of all possible Alternatives method to determine the weights of the key variables to formulate the MCDA-based classification criteria. Clinical vignettes scored by the experts as consensus cases or controls and real-world data collected in participating centres were used to test the performance of candidate classification criteria using receiver operating characteristic curves and diagnostic accuracy metrics.</p><p><strong>Results: </strong>Positivity for antisynthetase antibodies had the highest weight for ASSD classification. The highest-ranked clinical manifestation was ILD, followed by myositis, mechanic's hands, joint involvement, inflammatory rashes, Raynaud phenomenon, fever, and pulmonary hypertension. The candidate classification criteria achieved high areas under the curve when applied to the consensus cases and controls and real-world patient data. Sensitivities, specificities, and positive and negative predictive values were >80%.</p><p><strong>Conclusions: </strong>The MCDA-driven candidate classification criteria were consistent with published ASSD literature and yielded high accuracy and validity.</p>","PeriodicalId":8087,"journal":{"name":"Annals of the Rheumatic Diseases","volume":" ","pages":""},"PeriodicalIF":20.3000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of the Rheumatic Diseases","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.ard.2025.01.050","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"RHEUMATOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Objectives: To develop and evaluate the performance of multicriteria decision analysis (MCDA)-driven candidate classification criteria for antisynthetase syndrome (ASSD).

Methods: A list of variables associated with ASSD was developed using a systematic literature review and then refined into an ASSD key domains and variables list by myositis and interstitial lung disease (ILD) experts. This list was used to create preferences surveys in which experts were presented with pairwise comparisons of clinical vignettes and asked to select the case that was more likely to represent ASSD. Experts' answers were analysed using the Potentially All Pairwise RanKings of all possible Alternatives method to determine the weights of the key variables to formulate the MCDA-based classification criteria. Clinical vignettes scored by the experts as consensus cases or controls and real-world data collected in participating centres were used to test the performance of candidate classification criteria using receiver operating characteristic curves and diagnostic accuracy metrics.

Results: Positivity for antisynthetase antibodies had the highest weight for ASSD classification. The highest-ranked clinical manifestation was ILD, followed by myositis, mechanic's hands, joint involvement, inflammatory rashes, Raynaud phenomenon, fever, and pulmonary hypertension. The candidate classification criteria achieved high areas under the curve when applied to the consensus cases and controls and real-world patient data. Sensitivities, specificities, and positive and negative predictive values were >80%.

Conclusions: The MCDA-driven candidate classification criteria were consistent with published ASSD literature and yielded high accuracy and validity.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Annals of the Rheumatic Diseases
Annals of the Rheumatic Diseases 医学-风湿病学
CiteScore
35.00
自引率
9.90%
发文量
3728
审稿时长
1.4 months
期刊介绍: Annals of the Rheumatic Diseases (ARD) is an international peer-reviewed journal covering all aspects of rheumatology, which includes the full spectrum of musculoskeletal conditions, arthritic disease, and connective tissue disorders. ARD publishes basic, clinical, and translational scientific research, including the most important recommendations for the management of various conditions.
期刊最新文献
The role of multicriteria decision analysis in the development of candidate classification criteria for antisynthetase syndrome: analysis from the CLASS project. Evaluation of instruments assessing peripheral arthritis in spondyloarthritis: an analysis of the ASAS-PerSpA study. Obesity substantially impacts rheumatic and musculoskeletal diseases: time to act. The IL-6 axis in vascular inflammation: effects of IL-6 receptor blockade on vascular lesions from patients with giant-cell arteritis. Statistical review: frequently given comments updated.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1