Comparison of machine learning and nomogram to predict 30-day in-hospital mortality in patients with acute myocardial infarction combined with cardiogenic shock: a retrospective study based on the eICU-CRD and MIMIC-IV databases.

IF 2.3 3区 医学 Q3 CARDIAC & CARDIOVASCULAR SYSTEMS BMC Cardiovascular Disorders Pub Date : 2025-03-19 DOI:10.1186/s12872-025-04628-5
Caiyu Shen, Shuai Wang, Ruiheng Huo, Yuli Huang, Shu Yang
{"title":"Comparison of machine learning and nomogram to predict 30-day in-hospital mortality in patients with acute myocardial infarction combined with cardiogenic shock: a retrospective study based on the eICU-CRD and MIMIC-IV databases.","authors":"Caiyu Shen, Shuai Wang, Ruiheng Huo, Yuli Huang, Shu Yang","doi":"10.1186/s12872-025-04628-5","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>To evaluate the predictive utility of machine learning and nomogram in predicting in-hospital mortality in patients with acute myocardial infarction complicated by cardiogenic shock (AMI-CS), and to visualize the model results in order to analyze the impact of these predictors on the patients' prognosis.</p><p><strong>Methods: </strong>A retrospective analysis was conducted on 332 adult patients who were diagnosed with AMI-CS and admitted to the ICU for the first time within the eICU Collaborative Research Database (eICU-CRD). AdaBoost, XGBoost, LightGBM, Random Forest and logistic regression nomogram were developed utilizing the random forest recursive elimination (RF-RFE) and least absolute shrinkage and selection operator (LASSO) algorithms for feature selection.</p><p><strong>Results: </strong>Compared to the machine learning models, the nomogram demonstrated superior predictive accuracy for mortality in patients with AMI-CS, with an AUC value of 0.869 (95% CI: 0.803, 0.883) and an F1 score of 0.897 for the internal test set of nomogram, and an AUC of 0.770 (95% CI: 0.702, 0.801) and an F1 score of 0.832 for the external validation set.</p><p><strong>Conclusions: </strong>Nomogram enhance the interpretability and transparency of the models, leading to more reliable prognostic predictions for AMI-CS patients. This facilitates clinicians in making precise decisions, thereby enhancing patient prognosis.</p>","PeriodicalId":9195,"journal":{"name":"BMC Cardiovascular Disorders","volume":"25 1","pages":"197"},"PeriodicalIF":2.3000,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11924626/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Cardiovascular Disorders","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12872-025-04628-5","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Background: To evaluate the predictive utility of machine learning and nomogram in predicting in-hospital mortality in patients with acute myocardial infarction complicated by cardiogenic shock (AMI-CS), and to visualize the model results in order to analyze the impact of these predictors on the patients' prognosis.

Methods: A retrospective analysis was conducted on 332 adult patients who were diagnosed with AMI-CS and admitted to the ICU for the first time within the eICU Collaborative Research Database (eICU-CRD). AdaBoost, XGBoost, LightGBM, Random Forest and logistic regression nomogram were developed utilizing the random forest recursive elimination (RF-RFE) and least absolute shrinkage and selection operator (LASSO) algorithms for feature selection.

Results: Compared to the machine learning models, the nomogram demonstrated superior predictive accuracy for mortality in patients with AMI-CS, with an AUC value of 0.869 (95% CI: 0.803, 0.883) and an F1 score of 0.897 for the internal test set of nomogram, and an AUC of 0.770 (95% CI: 0.702, 0.801) and an F1 score of 0.832 for the external validation set.

Conclusions: Nomogram enhance the interpretability and transparency of the models, leading to more reliable prognostic predictions for AMI-CS patients. This facilitates clinicians in making precise decisions, thereby enhancing patient prognosis.

Abstract Image

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
机器学习和nomogram预测急性心肌梗死合并心源性休克患者住院30天死亡率的比较:基于eICU-CRD和MIMIC-IV数据库的回顾性研究
背景:评估机器学习和nomogram在预测急性心肌梗死合并心源性休克(AMI-CS)患者住院死亡率中的预测效用,并将模型结果可视化,以分析这些预测因素对患者预后的影响。方法:回顾性分析eICU合作研究数据库(eICU- crd)中332例确诊为AMI-CS并首次入ICU的成人患者。利用随机森林递归消除(RF-RFE)和最小绝对收缩和选择算子(LASSO)算法进行特征选择,开发了AdaBoost、XGBoost、LightGBM、Random Forest和logistic回归正态图。结果:与机器学习模型相比,nomogram对AMI-CS患者死亡率的预测准确性更高,nomogram内部测试集的AUC值为0.869 (95% CI: 0.803, 0.883), F1评分为0.897,而外部验证集的AUC值为0.770 (95% CI: 0.702, 0.801), F1评分为0.832。结论:Nomogram增强了模型的可解释性和透明度,使得AMI-CS患者的预后预测更加可靠。这有助于临床医生做出准确的决定,从而提高患者的预后。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
BMC Cardiovascular Disorders
BMC Cardiovascular Disorders CARDIAC & CARDIOVASCULAR SYSTEMS-
CiteScore
3.50
自引率
0.00%
发文量
480
审稿时长
1 months
期刊介绍: BMC Cardiovascular Disorders is an open access, peer-reviewed journal that considers articles on all aspects of the prevention, diagnosis and management of disorders of the heart and circulatory system, as well as related molecular and cell biology, genetics, pathophysiology, epidemiology, and controlled trials.
期刊最新文献
Persistent electrical storm following strong acid descaling agent ingestion successfully rescued with venoarterial extracorporeal membrane oxygenation: a case report. Correlation between Chinese visceral adiposity index and incidence of hypertension across different blood pressure status: a cohort study. Higher fatty liver index is associated with increased risk of incident atrial fibrillation in adults with diabetes: a prospective UK biobank study. Trough anticoagulant levels of high-dose versus standard-dose intravenous enoxaparin in patients undergoing trans-radial coronary angiography alone. Efficacy and safety of pulsed field ablation versus conventional thermal techniques for patients with atrial fibrillation: a systematic review and meta-analysis of randomized controlled trials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1