Nanomaterials for targeted drug delivery for immunotherapy of digestive tract tumors.

IF 5.7 2区 医学 Q1 IMMUNOLOGY Frontiers in Immunology Pub Date : 2025-03-05 eCollection Date: 2025-01-01 DOI:10.3389/fimmu.2025.1562766
Mingzhu Li, Ningxin Li, Haozhe Piao, Shengbo Jin, Hongzhe Wei, Qian Liu, Jun Yu, Wenping Wang, Siyao Ma, Yuxin Jiang, Huini Yao, Yue Shen, Jiaqing Fu
{"title":"Nanomaterials for targeted drug delivery for immunotherapy of digestive tract tumors.","authors":"Mingzhu Li, Ningxin Li, Haozhe Piao, Shengbo Jin, Hongzhe Wei, Qian Liu, Jun Yu, Wenping Wang, Siyao Ma, Yuxin Jiang, Huini Yao, Yue Shen, Jiaqing Fu","doi":"10.3389/fimmu.2025.1562766","DOIUrl":null,"url":null,"abstract":"<p><p>The incidence and mortality rates of digestive tract tumors, especially gastric and colorectal cancers, are high worldwide. Owing to their unique advantages, such as efficient drug loading, safety, and targeting properties, nanoparticles (NPs) have demonstrated great potential in the treatment of gastrointestinal tumors. However, their practical application is limited by several factors, such as high costs, few clinical trials, and long approval periods. In this review, we summarize three types of immunotherapeutic nanomaterial drugs for gastrointestinal tumors: organic, inorganic, and hybrid nanomaterials. This article also discusses the current status of research and development in this field and the advantages of each type of material to provide theoretical references for developing new drugs and advancing clinical research.</p>","PeriodicalId":12622,"journal":{"name":"Frontiers in Immunology","volume":"16 ","pages":"1562766"},"PeriodicalIF":5.7000,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11919842/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Immunology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3389/fimmu.2025.1562766","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The incidence and mortality rates of digestive tract tumors, especially gastric and colorectal cancers, are high worldwide. Owing to their unique advantages, such as efficient drug loading, safety, and targeting properties, nanoparticles (NPs) have demonstrated great potential in the treatment of gastrointestinal tumors. However, their practical application is limited by several factors, such as high costs, few clinical trials, and long approval periods. In this review, we summarize three types of immunotherapeutic nanomaterial drugs for gastrointestinal tumors: organic, inorganic, and hybrid nanomaterials. This article also discusses the current status of research and development in this field and the advantages of each type of material to provide theoretical references for developing new drugs and advancing clinical research.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
9.80
自引率
11.00%
发文量
7153
审稿时长
14 weeks
期刊介绍: Frontiers in Immunology is a leading journal in its field, publishing rigorously peer-reviewed research across basic, translational and clinical immunology. This multidisciplinary open-access journal is at the forefront of disseminating and communicating scientific knowledge and impactful discoveries to researchers, academics, clinicians and the public worldwide. Frontiers in Immunology is the official Journal of the International Union of Immunological Societies (IUIS). Encompassing the entire field of Immunology, this journal welcomes papers that investigate basic mechanisms of immune system development and function, with a particular emphasis given to the description of the clinical and immunological phenotype of human immune disorders, and on the definition of their molecular basis.
期刊最新文献
Corrigendum: Mannose-modified erythrocyte membrane-encapsulated chitovanic nanoparticles as a DNA vaccine carrier against reticuloendothelial tissue hyperplasia virus. Editorial: Immunological precision therapeutics: integrating multi-omics technologies and comprehensive approaches for personalized immune intervention. Exposing the cellular situation: findings from single cell RNA sequencing in breast cancer. Enhanced T-cell immunity and lower humoral responses following 5-dose SARS-CoV-2 vaccination in patients with inborn errors of immunity compared with healthy controls. Establishment and validation of a survival prediction model for stage IV non-small cell lung cancer: a real-world study.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1