Juanjuan Song, Kairui Ren, Yi Wang, Dexin Zhang, Lin Sun, Zhiqiang Tang, Lili Zhang, Ying Deng
{"title":"Screening and analysis of programmed cell death related genes and targeted drugs in sepsis.","authors":"Juanjuan Song, Kairui Ren, Yi Wang, Dexin Zhang, Lin Sun, Zhiqiang Tang, Lili Zhang, Ying Deng","doi":"10.1186/s41065-025-00403-w","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>This study employed bioinformatics techniques to identify diagnostic genes associated with programmed cell death (PCD) and to explore potential therapeutic agents for the treatment of sepsis.</p><p><strong>Methods: </strong>Gene expression profiles from sepsis patients were analyzed to identify differentially expressed genes (DEGs) and hub genes through Weighted Gene Co-expression Network Analysis (WGCNA). Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were conducted to elucidate the functions of the DEGs. PCD-related genes were cross-referenced with the identified DEGs. Diagnostic genes were selected using Least Absolute Shrinkage and Selection Operator (LASSO) and Random Forest (RF) methodologies. Single-cell RNA sequencing was utilized to assess gene expression in blood cells, while CIBERSORT was employed to evaluate immune cell infiltration. A transcription factor (TF)-microRNA (miRNA)-hub gene network was constructed, and potential therapeutic compounds were predicted using the Drug Gene Interaction Database (DGIdb). Mendelian Randomization (MR) methods were applied to analyze genome-wide association study (GWAS) data for S100A9, TXN, and GSTO1.</p><p><strong>Results: </strong>The analysis revealed 2156 PCD-related genes, 714 DEGs, and 1198 hub genes, with 88 genes enriched in immune and cell death pathways. Five pivotal PCD-related genes (IRAK3, S100A9, TXN, NFATC2, and GSTO1) were identified, leading to the construction of a network comprising six transcription factors and 171 microRNAs. Additionally, seven drugs targeting S100A9, TXN, and NFATC2 were identified. MR analysis suggested that a decrease in GSTO1 levels is associated with an increased risk of sepsis, and that sepsis influences the levels of S100A9, TXN, and GSTO1.</p><p><strong>Conclusions: </strong>Through bioinformatics approaches, this study successfully identified five genes (IRAK3, S100A9, TXN, NFATC2, and GSTO1) associated with programmed cell death in the context of sepsis. This research identified seven candidate drugs for sepsis treatment and established a methodological framework for predicting biomarkers and drug targets that could be applicable to other diseases.</p>","PeriodicalId":12862,"journal":{"name":"Hereditas","volume":"162 1","pages":"40"},"PeriodicalIF":2.7000,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hereditas","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s41065-025-00403-w","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Objective: This study employed bioinformatics techniques to identify diagnostic genes associated with programmed cell death (PCD) and to explore potential therapeutic agents for the treatment of sepsis.
Methods: Gene expression profiles from sepsis patients were analyzed to identify differentially expressed genes (DEGs) and hub genes through Weighted Gene Co-expression Network Analysis (WGCNA). Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were conducted to elucidate the functions of the DEGs. PCD-related genes were cross-referenced with the identified DEGs. Diagnostic genes were selected using Least Absolute Shrinkage and Selection Operator (LASSO) and Random Forest (RF) methodologies. Single-cell RNA sequencing was utilized to assess gene expression in blood cells, while CIBERSORT was employed to evaluate immune cell infiltration. A transcription factor (TF)-microRNA (miRNA)-hub gene network was constructed, and potential therapeutic compounds were predicted using the Drug Gene Interaction Database (DGIdb). Mendelian Randomization (MR) methods were applied to analyze genome-wide association study (GWAS) data for S100A9, TXN, and GSTO1.
Results: The analysis revealed 2156 PCD-related genes, 714 DEGs, and 1198 hub genes, with 88 genes enriched in immune and cell death pathways. Five pivotal PCD-related genes (IRAK3, S100A9, TXN, NFATC2, and GSTO1) were identified, leading to the construction of a network comprising six transcription factors and 171 microRNAs. Additionally, seven drugs targeting S100A9, TXN, and NFATC2 were identified. MR analysis suggested that a decrease in GSTO1 levels is associated with an increased risk of sepsis, and that sepsis influences the levels of S100A9, TXN, and GSTO1.
Conclusions: Through bioinformatics approaches, this study successfully identified five genes (IRAK3, S100A9, TXN, NFATC2, and GSTO1) associated with programmed cell death in the context of sepsis. This research identified seven candidate drugs for sepsis treatment and established a methodological framework for predicting biomarkers and drug targets that could be applicable to other diseases.
HereditasBiochemistry, Genetics and Molecular Biology-Genetics
CiteScore
3.80
自引率
3.70%
发文量
0
期刊介绍:
For almost a century, Hereditas has published original cutting-edge research and reviews. As the Official journal of the Mendelian Society of Lund, the journal welcomes research from across all areas of genetics and genomics. Topics of interest include human and medical genetics, animal and plant genetics, microbial genetics, agriculture and bioinformatics.