The research progress on the impact of pig gut microbiota on health and production performance.

IF 2.6 2区 农林科学 Q1 VETERINARY SCIENCES Frontiers in Veterinary Science Pub Date : 2025-03-05 eCollection Date: 2025-01-01 DOI:10.3389/fvets.2025.1564519
Jing Wang, Tiejin Tong, Changqing Yu, Qiang Wu
{"title":"The research progress on the impact of pig gut microbiota on health and production performance.","authors":"Jing Wang, Tiejin Tong, Changqing Yu, Qiang Wu","doi":"10.3389/fvets.2025.1564519","DOIUrl":null,"url":null,"abstract":"<p><p>Porcine gut microbiota plays a crucial role in the health and productive performance of pigs, influencing nutrient absorption, feed conversion efficiency, and ultimately, production profitability. In addition to being the primary site of digestion, the intestine houses the pig's largest immune organ, where the microbial community is essential for overall well-being. During the piglet stage, the gut microbiota undergoes a dynamic evolution, gradually adapting to the host environment. This plasticity presents opportunities to intervene and optimize its composition from early stages, enhancing animal health and development. Among the key factors in this process, dietary fiber plays a fundamental role, as its fermentation by the gut microbiota directly affects its composition and functionality, particularly in the distal small intestine, colon, and rectum. The short-chain fatty acids produced during this process not only provide continuous energy to intestinal cells but also regulate immune responses, prevent infections, and contribute to the body's homeostasis, promoting healthy growth. Despite advancements in understanding host-microbiota interactions, there is still no clear consensus on the optimal balance of gut microbiota or a precise definition of a healthy microbiota. Current research aims to identify the factors that modulate the gastrointestinal microbiota and its physiological and immune functions. Future findings will aid in developing strategies to restore gut homeostasis after external disruptions, such as stress, antibiotic use, or infections, thereby improving productivity, reducing stress-related impacts, and preventing diseases in pig production.</p>","PeriodicalId":12772,"journal":{"name":"Frontiers in Veterinary Science","volume":"12 ","pages":"1564519"},"PeriodicalIF":2.6000,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11919827/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Veterinary Science","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.3389/fvets.2025.1564519","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"VETERINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Porcine gut microbiota plays a crucial role in the health and productive performance of pigs, influencing nutrient absorption, feed conversion efficiency, and ultimately, production profitability. In addition to being the primary site of digestion, the intestine houses the pig's largest immune organ, where the microbial community is essential for overall well-being. During the piglet stage, the gut microbiota undergoes a dynamic evolution, gradually adapting to the host environment. This plasticity presents opportunities to intervene and optimize its composition from early stages, enhancing animal health and development. Among the key factors in this process, dietary fiber plays a fundamental role, as its fermentation by the gut microbiota directly affects its composition and functionality, particularly in the distal small intestine, colon, and rectum. The short-chain fatty acids produced during this process not only provide continuous energy to intestinal cells but also regulate immune responses, prevent infections, and contribute to the body's homeostasis, promoting healthy growth. Despite advancements in understanding host-microbiota interactions, there is still no clear consensus on the optimal balance of gut microbiota or a precise definition of a healthy microbiota. Current research aims to identify the factors that modulate the gastrointestinal microbiota and its physiological and immune functions. Future findings will aid in developing strategies to restore gut homeostasis after external disruptions, such as stress, antibiotic use, or infections, thereby improving productivity, reducing stress-related impacts, and preventing diseases in pig production.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Frontiers in Veterinary Science
Frontiers in Veterinary Science Veterinary-General Veterinary
CiteScore
4.80
自引率
9.40%
发文量
1870
审稿时长
14 weeks
期刊介绍: Frontiers in Veterinary Science is a global, peer-reviewed, Open Access journal that bridges animal and human health, brings a comparative approach to medical and surgical challenges, and advances innovative biotechnology and therapy. Veterinary research today is interdisciplinary, collaborative, and socially relevant, transforming how we understand and investigate animal health and disease. Fundamental research in emerging infectious diseases, predictive genomics, stem cell therapy, and translational modelling is grounded within the integrative social context of public and environmental health, wildlife conservation, novel biomarkers, societal well-being, and cutting-edge clinical practice and specialization. Frontiers in Veterinary Science brings a 21st-century approach—networked, collaborative, and Open Access—to communicate this progress and innovation to both the specialist and to the wider audience of readers in the field. Frontiers in Veterinary Science publishes articles on outstanding discoveries across a wide spectrum of translational, foundational, and clinical research. The journal''s mission is to bring all relevant veterinary sciences together on a single platform with the goal of improving animal and human health.
期刊最新文献
Acute whole-body vibration as a recovery strategy did not alter the content of gluteus medius monocarboxylate-transporters, lactatemia, and acidosis induced by intense exercise in horses. Beyond ordinal scales: making animal welfare count in policy analysis. Risk perception and transmission potential of Neospora caninum at the wildlife and livestock interface in Minnesota. Detection of spotted fever group rickettsiae and Coxiella burnetii in long-tailed ground squirrels (Spermophilus undulatus) and their ectoparasites. Harnessing sequencing data for porcine reproductive and respiratory syndrome virus (PRRSV): tracking genetic evolution dynamics and emerging sequences in US swine industry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1