Surface sanitation against foodborne pathogens in domestic environments: efficacy of a handheld ultraviolet C light emitting diode device.

IF 3.2 3区 生物学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Journal of Applied Microbiology Pub Date : 2025-04-01 DOI:10.1093/jambio/lxaf072
Francesco Palma, Giulia Baldelli, Giulia Amagliani, Asja Conti, Mauro De Santi, Giorgio Brandi, Giuditta Fiorella Schiavano
{"title":"Surface sanitation against foodborne pathogens in domestic environments: efficacy of a handheld ultraviolet C light emitting diode device.","authors":"Francesco Palma, Giulia Baldelli, Giulia Amagliani, Asja Conti, Mauro De Santi, Giorgio Brandi, Giuditta Fiorella Schiavano","doi":"10.1093/jambio/lxaf072","DOIUrl":null,"url":null,"abstract":"<p><strong>Aim: </strong>Ensuring food safety is fundamental to protect public health, especially in domestic environments where food is handled daily. This two-phase study aimed to investigate the efficacy of an ultraviolet-C light emitting diode (UV-C LED) handheld lamp through in vitro disinfection tests and disinfection tests on artificially contaminated surfaces.</p><p><strong>Methods and results: </strong>The UV-C LED-based lamp efficacy was assessed at different initial microbial contamination titers and several UV doses, and both American Type Culture Collection (ATCC), foodborne, and clinical strains were considered. The UV-C LED lamp demonstrated high efficacy (log10 reduction >1 log) against the standard bacteria strains tested using a UV dose of 21.77 mJ cm-2. The greatest efficacy was achieved against E. coli (k = 0.0232) followed then by Bacillus subtilis (k = 0.0225) against which a titer of <1 CFU ml-1 was achieved with a UV dose of 15.55 and 21.77 mJ cm-2, respectively. Cladosporium spp. (k = 0.001) showed higher resistance against UV treatment, where a 50.00 ± 14.14 inactivation rate % (%IR) was achieved by applying the highest UV dose (31.1 mJ cm-2). Compared with B. subtilis, isolated L. monocytogenes 490 showed similar susceptibility (k = 0.0236), unlike isolated Listeria monocytogenes 1484 (k = 0.0146), isolated Salmonella Infantis 43 072/20 (k = 0.0126), and isolated S. Infantis 29 673/20 (k = 0.0124), which showed greater UV resistance. Considering the results obtained on the surfaces (stainless steel, polypropylene, and glass), the type of surface material influenced the susceptibility of isolated bacterial strains. However, the presence of organic matter (5% fetal bovine serum) on the treatment surface did not significantly affect device decontamination efficiency by applying a UV dose of 15.55, 21.77, and 31.1 mJ cm-2. On both stainless steel and glass, a titer <1 CFU 169 cm-2 was achieved against all the isolated bacterial strains applying a UV dose of 31.1 mJ cm-2, except with L. monocytogenes 1484. Lastly, a titer <1 CFU 169 cm-2 was never achieved on polypropylene contaminated with L. monocytogenes 1484.</p><p><strong>Conclusion: </strong>The use of a UV-C LED handheld lamp (peak wavelength 265 nm) could be an efficient disinfection method to be applied in domestic or small-scale food-processing environments, to reduce the cross contamination of food.</p>","PeriodicalId":15036,"journal":{"name":"Journal of Applied Microbiology","volume":" ","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Microbiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/jambio/lxaf072","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Aim: Ensuring food safety is fundamental to protect public health, especially in domestic environments where food is handled daily. This two-phase study aimed to investigate the efficacy of an ultraviolet-C light emitting diode (UV-C LED) handheld lamp through in vitro disinfection tests and disinfection tests on artificially contaminated surfaces.

Methods and results: The UV-C LED-based lamp efficacy was assessed at different initial microbial contamination titers and several UV doses, and both American Type Culture Collection (ATCC), foodborne, and clinical strains were considered. The UV-C LED lamp demonstrated high efficacy (log10 reduction >1 log) against the standard bacteria strains tested using a UV dose of 21.77 mJ cm-2. The greatest efficacy was achieved against E. coli (k = 0.0232) followed then by Bacillus subtilis (k = 0.0225) against which a titer of <1 CFU ml-1 was achieved with a UV dose of 15.55 and 21.77 mJ cm-2, respectively. Cladosporium spp. (k = 0.001) showed higher resistance against UV treatment, where a 50.00 ± 14.14 inactivation rate % (%IR) was achieved by applying the highest UV dose (31.1 mJ cm-2). Compared with B. subtilis, isolated L. monocytogenes 490 showed similar susceptibility (k = 0.0236), unlike isolated Listeria monocytogenes 1484 (k = 0.0146), isolated Salmonella Infantis 43 072/20 (k = 0.0126), and isolated S. Infantis 29 673/20 (k = 0.0124), which showed greater UV resistance. Considering the results obtained on the surfaces (stainless steel, polypropylene, and glass), the type of surface material influenced the susceptibility of isolated bacterial strains. However, the presence of organic matter (5% fetal bovine serum) on the treatment surface did not significantly affect device decontamination efficiency by applying a UV dose of 15.55, 21.77, and 31.1 mJ cm-2. On both stainless steel and glass, a titer <1 CFU 169 cm-2 was achieved against all the isolated bacterial strains applying a UV dose of 31.1 mJ cm-2, except with L. monocytogenes 1484. Lastly, a titer <1 CFU 169 cm-2 was never achieved on polypropylene contaminated with L. monocytogenes 1484.

Conclusion: The use of a UV-C LED handheld lamp (peak wavelength 265 nm) could be an efficient disinfection method to be applied in domestic or small-scale food-processing environments, to reduce the cross contamination of food.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
家庭环境中表面卫生对食源性病原体的影响:手持式紫外C发光二极管(LED)装置的效果。
目的:确保食品安全对保护公众健康至关重要,特别是在日常处理食品的家庭环境中。本研究分为两阶段,旨在通过体外消毒试验和人工污染表面消毒试验来考察紫外- c发光二极管(UV-C LED)手持式灯的消毒效果。方法与结果:在不同初始微生物污染滴度和几种紫外线剂量下,考虑ATCC、食源性和临床菌株,评估UV- c led灯的功效。UV- c LED灯对使用21.77 mJ cm-2的紫外剂量测试的标准细菌菌株显示出高效率(log10减少bbb10 log)。结论:紫外- c LED手持式灯(峰值波长265nm)可作为一种有效的消毒方法,应用于家庭或小规模食品加工环境,减少食品的交叉污染。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Applied Microbiology
Journal of Applied Microbiology 生物-生物工程与应用微生物
CiteScore
7.30
自引率
2.50%
发文量
427
审稿时长
2.7 months
期刊介绍: Journal of & Letters in Applied Microbiology are two of the flagship research journals of the Society for Applied Microbiology (SfAM). For more than 75 years they have been publishing top quality research and reviews in the broad field of applied microbiology. The journals are provided to all SfAM members as well as having a global online readership totalling more than 500,000 downloads per year in more than 200 countries. Submitting authors can expect fast decision and publication times, averaging 33 days to first decision and 34 days from acceptance to online publication. There are no page charges.
期刊最新文献
Combining Lactiplantibacillus plantarum and Bifidobacterium adolescentis can improve GABA production in faecal fermentations. Microbes: the invisible codes of forensic science. Semi-mechanistic PK/PD modelling of enrofloxacin against sensitive Pasteurella multocida: inter-strain variability and prediction of efficacy in pigs. CRISPR-Cas9 mediated genome editing in fungi: applications, challenges and future directions. Coffee Cartridge Filtration: A Rapid, Inexpensive, and Easy Method to Concentrate Nucleic Acids from Pathogens and Fecal Biomarkers in Wastewater.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1